Skip to main content
Log in

Strategic production technology planning using a dynamic technology chain calendar

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Producing companies need to apply production technology chains that best fulfill current and future requirements. They have to evaluate whether the technology chain currently being used is sufficient or if there exist another chain that is more suitable. Moreover, companies have to ascertain the right period in time to switch from one chain to another, which depends strongly on multiple cycles that occur temporally, e.g., the technology lifecycle. To handle these cycles, this paper presents a dynamic technology chain calendar that is integrated in a method for strategic production technology planning. Within early phases, technology planning relies on qualitative information in the form of expert knowledge. To model this knowledge mathematically, continuous-time recurrent fuzzy systems are used. The practical use of the method is illustrated in an exemplary application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nyhuis P, Reinhart G, Abele E (2008) Wandlungsfähige Produktionssysteme: Heute die Industrie von morgen gestalten. PZH Produktionstechnisches Zentrum, Garbsen

    Google Scholar 

  2. Seliger G (2012) Sustainable manufacturing for global value creation. In: Seliger G (ed) Sustainable manufacturing. Springer, Berlin, pp 3–8

    Chapter  Google Scholar 

  3. Du X, Jiao J, Tseng M (2005) Understanding customer satisfaction in product customization. Int J Adv Manuf Technol 31(3–4):396–406

    Google Scholar 

  4. Wiendahl HP, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl HH, Duffie N, Kolakowski M (2007) Changeable manufacturing: classification, design and operation. Ann CIRP 56(2):1–25

    Article  Google Scholar 

  5. Milberg J (2005) Deutschland eine starke Marke: ein Beitrag zur Leitbilddiskussion in Deutschland. In: Brecher C, Klocke F, Schmitt R, Schuh G (eds) Wettbewerbsfaktor Produktionstechnik. Shaker, Aachen, pp 1–16

    Google Scholar 

  6. Schuh G, Agassi S, Orilski S, Schubert J, Bambach M, Freudenberg R, Hinke C, Schiffer M (2011) Technology roadmapping for the production in high-wage countries. Prod Eng Res Dev 4(5):463–473

    Article  Google Scholar 

  7. Schindler S (2014) Strategische Planung von Technologieketten für die Produktion: Diss. TU München, Utz, München

  8. Gausemeier J, Echterhoff N, Kokoschka M (2011) Direct manufacturing: innovative Fertigungsverfahren für die Produkte von morgen. In: Gausemeier J (ed) Vorausschau und Technologieplanung, HNI-Verlagsschriftenreihe, Band 300, Heinz-Nixdorf-Institut, pp 5–27

  9. Wördenweber B, Wickord W (2008) Technologie—und Innovationsmanagement im Unternehmen: Lean Innovation. Springer, Berlin

    Google Scholar 

  10. Reinhart G, Schindler S (2012) Strategic evaluation of technology chains for producing companies. In: ElMaraghy HA (ed) Enabling manufacturing competitiveness and economic sustainability. Springer, Berlin, pp 391–396

    Chapter  Google Scholar 

  11. Sommerlatte T, Deschamps JP (1985) Der strategische Einsatz von Technologien. Gabler, Wiesbaden, pp 39–76

    Google Scholar 

  12. Foster RN (1986) Innovation: the attacker’s advantage. Summit-Books, New York

    Book  Google Scholar 

  13. Brousseau EB, Barton R, Dimov S, Bigot S (2010) A methodology for evaluating the technological maturity of micro and nano fabrication processes. In: Ratchev S (ed) Precision assembly technologies and systems. Springer, Berlin, pp 329–336

    Chapter  Google Scholar 

  14. Fallböhmer M (2000) Generieren alternativer Technologieketten in frühen Phasen der Produktentwicklung: Diss. RWTH Aachen. Shaker, Aachen

    Google Scholar 

  15. Schenkel SA, Behncke FGH, Hepperle C, Langer S, Lindemann U (2013) Managing cycles of innovation processes of product-service systems. In: IEEE international conference on systems, man, and cybernetics (SMC), 13–16 October 2013, Manchester

  16. Plehn C, Koch J, Diepold K, Stahl B, Lohmann B, Reinhart G, Zäh MF (2014) Modeling and analyzing dynamic cycle networks for manufacturing planning. In: Proceedings of the 3rd CIRP global web conference on production engineering research: advancement beyond state of the art, 3–5 June 2014

  17. Greitemann J, Stahl B, Michels N, Lohmann B, Reinhart G (2014) Quantitative model of the technology lifecycle for forecasting the maturity of manufacturing technologies. In: IEEE international conference on management of innovation and technology (ICMIT). Singapore, 23–25 September 2014

  18. Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MathSciNet  MATH  Google Scholar 

  19. Wong BK, Lai VS (2011) A survey of the application of fuzzy set theory in production and operations management:1998–2009. Int J Prod Econ 129(1):157–168

    Article  Google Scholar 

  20. Schuh G, Klappert S, Orilski S (2011) Technologieplanung. In: Schuh G, Klappert S (eds) Technologiemanagement. Springer, Berlin, pp 171–222

    Chapter  Google Scholar 

  21. Gausemeier J, Fink A, Schlake O (1998) Scenario management: an approach to develop future potentials. Technol Forecast Soc Change 59(2):111–130

    Article  Google Scholar 

  22. Reinhart G, Schindler S (2010) Reife von Produktionstechnologien: Konzeptionelle Bestimmung des Entwicklungsstadiums von Fertigungsverfahren und -prozessen. Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) 105(7–8):710–714

    Google Scholar 

  23. Reinhart G, Schindler S, Bruckbauer P (2011) Reife von Technologieketten: Konzeptionelle Bestimmung des Entwicklungsstadiums der Reihenschaltung von Produktionstechnologien. Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) 106(9):639–643

    Google Scholar 

  24. Schmitz WJ (1996) Methodik zur strategischen Planung von Fertigungstechnologien: Ein Beitrag zur Identifizierung und Nutzung von Innovationspotentialen: Diss. RWTH Aachen. Shaker, Aachen

    Google Scholar 

  25. Phaal R, Farrukh CJP, Probert DR (2004) Technology roadmapping: a planning framework for evolution and revolution. Technol Forecast Soc Change 71(1–2):5–26

    Article  Google Scholar 

  26. Nau B, Roderburg A, Klocke F, Park HS (2012) Risk assessment of hybrid manufacturing technologies for ramp-up projects. CIRP J Manuf Sci Technol 5(4):228–234

    Article  Google Scholar 

  27. Denkena B, Rudzio H, Liedtke C, Brandes A (2005) Planung fertigungstechnischer Prozessketten: Entwicklung und Methoden zur ganzheitlichen Prozesskettenplanung. wt Werkstattstechnik online 95(11–12):866–871

    Google Scholar 

  28. Trommer G (2001) Methodik zur konstruktionsbegleitenden Generierung und Bewertung alternativer Fertigungsfolgen: Diss. RWTH Aachen. Shaker, Aachen

    Google Scholar 

  29. Kostoff RN, Schaller RR (2001) Science and technology roadmaps. IEEE Trans Eng Manag 2(2):132–143

    Article  Google Scholar 

  30. Probert D, Radnor M (2003) Frontier experiences from industry–academia consortia. Res Technol Manag 46(2):27–30

    Google Scholar 

  31. Daim TU, Gerdsri N, Basoglu N, Albar F (2011) Technology assessment: forecasting future adoption of emerging technologies. Erich-Schmidt, Berlin

    Google Scholar 

  32. Carvalho MM, Fleury A, Lopes AP (2012) An overview of the literature on technology roadmapping (TRM): contributions and trends. Technol Forecast Soc Change 80(7):1418–1437

    Article  MATH  Google Scholar 

  33. Lee JH, Phaal R, Lee C (2011) An empirical analysis of the determinants of technology roadmap utilization. R&D Manag 41(5):485–508

    Article  Google Scholar 

  34. Greitemann J, Plehn C, Koch J, Reinhart G (2014) Strategic screening of manufacturing technologies. In: Zaeh MF (ed) Enabling manufacturing competitiveness and economic sustainability. Springer, Berlin, pp 321–326

    Chapter  Google Scholar 

  35. Reisen K, Greitemann J, Rester N, Reinhart G (2014) Production technology screening for innovative products. In: IEEE international technology management conference (ITMC). Chicago, 12–15 June 2014

  36. Adamy J, Flemming A (2006) Equilibria of continuous-time recurrent fuzzy systems. Fuzzy Sets Syst 157(22):2913–2933

    Article  MathSciNet  MATH  Google Scholar 

  37. Stahl B, Diepold KJ, Pohl J, Greitemann J, Plehn C, Koch J, Lohmann B, Reinhart G, Zäh MF (2013) Modeling cyclic interactions within a production environment using transition adaptive recurrent fuzzy systems. In: Proceedings of the 7th IFAC conference on manufacturing modelling, manangement and control. Saint Petersburg, 19–21 June 2013

  38. Saaty TL (1990) The analytic hierarchy process: planning, priority setting, resource allocation. RWS Publishing, Pittsburgh, Pennsylvania

    Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Foundation (DFG) for funding this work as part of the collaborative research project “Managing cycles in innovation processes—Integrated development of product service systems based on technical products (SFB 768)”. This paper is a result of a cooperation of the subprojects A3, B3 and T2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Greitemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greitemann, J., Stahl, B., Schönmann, A. et al. Strategic production technology planning using a dynamic technology chain calendar. Prod. Eng. Res. Devel. 9, 417–424 (2015). https://doi.org/10.1007/s11740-015-0617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-015-0617-8

Keywords

Navigation