Skip to main content
Log in

Improvement of the machining accuracy of milling robots

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This paper presents an approach to improve the machining accuracy of milling robots. The low static stiffness of industrial robots leads to huge deflections of the tool. Hence, robotic milling can only be applied for tasks with low accuracy requirements and minor cutting forces (e.g., deburring or trimming). To expand the application fields of industrial robots in milling operations, a new methodology to increase the machining accuracy was developed at the Institute of Machine Tools and Industrial Management (iwb) of TU Munich. The methodology consists of a model-based fuzzy controller for the compensation of the (static) path-deviation and a method to identify the necessary stiffness parameters of the robot with low experimental effort. The approach was implemented on a robot of Type KUKA KR 240 R2500 prime and validated by milling test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Realized on a laptop with Intel Core i5-3427U CPU running at 1.80 GHz.

References

  1. Schröer K (1998) Handbook on robot performance testing and calibration. Improvement of robot industrial standardisation (IRIS). Fraunhofer-IRB, Stuttgart. ISBN: 3-8167-5200-4

  2. Nguyen H-N, Zhou J, Kang H-J (2013) A new full pose measurement method for robot calibration. Sensors 13(7):9132–9147

    Article  Google Scholar 

  3. Nubiola A, Bonev IA (2013) Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot Comput Integr Manuf 29(1):236–245

    Article  Google Scholar 

  4. Fill GmbH: product sheet: Robmill CNC Plus. http://www.fill.co.at/de/holz-bau/holz/massivholzkomponenten-clt/robmill-cnc-plus/pdf/1221p359i50.html. Accessed 4 Jun 2014

  5. Loser R (2011) Laser tracker and 6DoF measurement strategies in industrial robot applications. In: CMSC 2011: Coordinate Metrology System Conference, Phoenix, Arizona, 25 to 28 July 2011

  6. Schmitt R (2010) Indoor-GPS based robots as a key technology for versatile production. In: 41st International Symposium on and 2010 6th German Conference on Robotics. 7 to 9 June 2010. ISBN: 978-3-8007-3273-9, pp 199–205

  7. Michalos G, Makris S, Eytan A, Matthaiakis S, Chryssolouris G (2012) Robot path correction using stereo vision system. In: 45th CIRP Conference on Manufacturing Systems. Athens, Greece, 16 to 18 May 2012, pp 400–405

  8. Devlieg R (2011) High-accuracy robotic drilling/milling of 737 inboard flaps. In: Aerospace Technology Conference and Exposition. Toulouse, France, 18 to 21 October 2011

  9. Abele E, Schützer K, Bauer J, Pischan M (2012) Tool path adaption based on optical measurement data for milling with industrial robots. Prod Eng Res Dev 6(4–5):459–465

    Article  Google Scholar 

  10. Alici G, Shirinzadeh B (2005) Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Trans Robot 21(4):554–564

    Article  Google Scholar 

  11. Thümmel M (2007) Modellbasierte Regelung mit nichtlinearen inversen Systemen und Beobachtern von Robotern mit elastischen Gelenken

  12. Reiner M, Otter M, Ulbrich H (2010) Modeling and feed-forward control of structural elastic robots. In: International Conference on Numerical Analysis and Applied Mathematics 1281, Rhodes, Greece, 19 to 25 September 2010, pp 378–381

  13. Abele E, Rothenbücher S, Weigold M (2008) Cartesian compliance model for industrial robots using virtual joints. Prod Eng Res Dev 2(3):339–343

    Article  Google Scholar 

  14. Craig R, Bampton M (1968) Coupling of substructures for dynamic analyses. AIAA J 6(7):1313–1319

    Article  MATH  Google Scholar 

  15. Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices. J Appl Mech 22:215–221

    MathSciNet  MATH  Google Scholar 

  16. Hayati S, Mirmirani M (1985) Improving the absolute positioning accuracy of robot manipulators. J Robot Syst 2(4):397–413

    Article  Google Scholar 

  17. Veitschegger W, Wu CH (1997) A method for calibrating and compensating robot kinematic errors. (Hrsg.): International Conference on Robotics and Automation. Piscataway: IEEE 1997, Raleigh, USA, pp 39–44

  18. Seyfferth W, Maghzall AJ, Angeles J (1995) Nonlinear modeling and parameter identification of harmonic drive robotic transmissions. In: Robotics and Automation Society (Hrsg.): Proceedings of 1995 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Service Center 1995, Nagoya, Japan, 21–27.05.1995, pp 3027–3032

  19. Zhang G (2005) Machining with flexible manipulator: toward improving robotic machining performance. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2005, Monterey, USA, 24 to 28 July 2005, pp 1127–1132

  20. Cortsen J, Petersen HG (2011) A new experimental method for predicting static tool displacements for machining with robot manipulators. In: 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: IEEE 2011, Budapest, Hungary, 3 to 7 July 2011, pp 361–366

  21. Pfeiffer F, Hölzl J (1993) Parameter identification for industrial robots. In: IEEE International Symposium on Industrial Electronics. Budapest, Hungary, 1 to 3 June 1993. Piscataway: IEEE Service Center 1993, pp 1468–1476. ISBN: 0-780-31228-7

  22. Roesch O (2013) Model-based on-line compensation of path deviations for milling robots. Adv Mater Res 769:255–262

    Article  Google Scholar 

  23. Tietze U, Schenk C (1993) Halbleiter-Schaltungstechnik. Springer, Berlin, ISBN: 3-540-56184-6

  24. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Roesch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaeh, M.F., Roesch, O. Improvement of the machining accuracy of milling robots. Prod. Eng. Res. Devel. 8, 737–744 (2014). https://doi.org/10.1007/s11740-014-0558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0558-7

Keywords

Navigation