Skip to main content
Log in

LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Light-emitting diodes (LEDs) are useful for the growth of many plants, but not known for blueberry species. This study examined the effects of fluorescent lamps and 100 % red, 80 % red plus 20 % blue, 50 % red plus 50 % blue, and 100 % blue LEDs on the growth and development of highbush blueberry shoots under aseptic and non-aseptic conditions. Results revealed that monochromatic blue LEDs accumulated the highest contents of leaf chlorophylls. In contrast, monochromatic red LEDs inhibited chlorophyll accumulation, but produced the longest shoots and roots and provided high percentages of side shoot formation from ex vitro plants. Mixed LEDs, particularly 50 % red plus 50 % blue light, improved plant growth with respect to notably increased shoot and root biomass. Direct rooting of in vitro shoots under non-aseptic conditions was readily achieved using a commercial mixture of perlite and peat moss with high humidity controls. These findings obviously suggest the efficient use of LEDs to replace traditional fluorescent lamps in large-scale propagation of the highbush blueberry, and also pave the way for future studies on LEDs for standardizing micropropagation protocols to shrub crops and woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

B:

100 % blue LEDs

FL:

Fluorescent lamps

LEDs:

Light-emitting diodes

R:

100 % red LEDs

R5B5:

50 % red plus 50 % blue LEDs

R8B2:

80 % red plus 20 % blue LEDs

MS:

Murashige and Skoog

MW:

Medium containing 50 % MS plus 50 % WPM

WPM:

Woody Plant Medium

ZR:

Zeatin riboside

References

  • Bourget CM (2008) An introduction to light-emitting diodes. HortSci 43:1944–1946

    Google Scholar 

  • Cao X, Hammerschlag FA (2000) Improved shoot organogenesis from leaf explants of highbush blueberry. HortSci 35:945–947

    CAS  Google Scholar 

  • Cao X, Fordham I, Douglass L, Hammerschlag F (2003) Sucrose level influences micropropagation and gene delivery into leaves from in vitro propagated highbush blueberry shoots. Plant Cell Tissue Organ Cult 75:255–259

    Article  CAS  Google Scholar 

  • El-Shiekh A, Wildung DK, Luby JJ, Sargent KL, Read PE (1996) Long-term effects of propagation by tissue culture or softwood single-node cuttings on growth habit, yield, and berry weight of ‘Northblue’ blueberry. J Amer Soc Hort Sci 121:339–342

    Google Scholar 

  • Finn CE, Luby JJ, Rosen CJ, Ascher PD (1991) Evaluation in vitro of blueberry germplasm for higher pH tolerance. J Amer Soc Hort Sci 116:312–316

    Google Scholar 

  • Gajdošová A, Ostrolucká MG, Libiaková G, Ondrušková E, Šimala D (2006) Microclonal propagation of Vaccinium sp. and Rubus sp. and detection of genetic variability in culture in vitro. J Fruit Ornman Plant Res 14:103–119

    Google Scholar 

  • Godo T, Fujiwara K, Guan K, Miyoshi K (2011) Effect of wavelength of LED-light on in vitro asymbiotic germination and seedling growth of Bletilla ochracea Schltr. (Orchidaceae). Plant Biotechnol 28:397–400

    Article  Google Scholar 

  • Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Hahn EJ, Kozai T, Paek KY (2000) Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets. J Plant Biol 43:247–250

    Article  Google Scholar 

  • Heo JW, Shin KS, Kim SK, Paek KY (2006) Light quality affects in vitro growth of grape ‘Teleki 5BB7’. J Plant Biol 49:276–280

    Article  Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, Ieperen WV, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell AB (2009) Update on health benefits of cranberry and blueberry. Acta Hort 810:779–785

    Article  Google Scholar 

  • Hruskoci JD, Read PE (1993) In vitro shoot regeneration from internode segments and internode-derived callus of blueberry (Vaccinium spp.). Acta Hort 346:125–130

    Article  Google Scholar 

  • Hung CD, Trueman SJ (2010) Nutrient responses differ between node and organogenic cultures of Corymbia torelliana × C. citriodora (Myrtaceae). Aust J Bot 58:410–419

    Article  Google Scholar 

  • Hung CD, Trueman SJ (2011) In vitro propagation of the African mahogany Khaya senegalensis. New For 42:117–130

    Article  Google Scholar 

  • Hung CD, Trueman SJ (2012) Cytokinin concentrations for optimal micropropagation of Corymbia torelliana × C. citriodora. Aust For 75:233–237

    Article  Google Scholar 

  • Hung CD, Johnson K, Torpy F (2006) Liquid culture for efficient micropropagation of Wasabia japonica (Miq.) Matsumura. In Vitro Cell Dev Biol Plant 42:548–552

    Article  CAS  Google Scholar 

  • Hung CD, Hong CH, Jung HB, Kim SK, Ket NV, Nam MW, Choi DH, Lee HI (2015) Growth and morphogenesis of encapsulated strawberry shoot tips under mixed LEDs. Sci Hort 194:194–200

    Article  Google Scholar 

  • Isutsa DK, Pritts MP, Mudge KW (1994) Rapid propagation of blueberry plants using ex vitro rooting and controlled acclimatization of micropropagules. HortSci 29:1124–1126

    Google Scholar 

  • Jao RC, Lai CC, Fang W, Chang SF (2005) Effect of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light emitting diodes. HortSci 40:436–438

    Google Scholar 

  • Johkan M, Shoji K, Goto F, Hashida S, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortSci 45:1809–1814

    Google Scholar 

  • Kurilčik A, Miklušytė-Čanova R, Dapkūnienė S, Žilinskaitė S, Kurilčik G, Tamulaitis G, Duchovskis P, Žukauskas A (2008) In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent Eur J Biol 3:161–167

    Google Scholar 

  • Lareau MJ (1985) Rooting and establishment of in vitro blueberry plantlets in the presence of mycorrhizal fungi. Acta Hort 165:197–202

    Article  Google Scholar 

  • Li H, Xu Z, Tang C (2010) Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ Cult 103:155–163

    Article  Google Scholar 

  • Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hort 150:86–91

    Article  Google Scholar 

  • Litwińczuk W, Szczerba G, Wrona D (2005) Field performance of highbush blueberries (Vaccinium × corymbosum L.) cv. ‘Herbert’ propagated by cuttings and tissue culture. Sci Hort 106:162–169

    Article  Google Scholar 

  • Liu C, Callow P, Rowland LJ, Hancock JF, Song G (2010) Adventitious shoot regeneration from leaf explants of southern highbush blueberry cultivars. Plant Cell Tissue Organ Cult 103:137–144

    Article  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. HortSci 43:1951–1956

    Google Scholar 

  • Meiners J, Schwab M, Szankowski I (2007) Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue Organ Cult 89:169–176

    Article  Google Scholar 

  • Mengxi L, Zhigang X, Yang Y, Yijie F (2010) Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tissue Organ Cult 106:1–10

    Article  Google Scholar 

  • Moon HK, Park SK, Kim YW, Kim CS (2006) Growth of Tsuru-rindo (Tripterospermum japonicum) cultured in vitro under various sources of light-emitting diode (LED) irradiation. J Plant Biol 49:174–179

    Article  Google Scholar 

  • Morrow RC (2008) LED lighting in horticulture. HortSci 43:1947–1950

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland M (1998) Antioxidant capacity is influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem 46:2686–2693

    Article  CAS  Google Scholar 

  • Prodorutti D, Pertot I, Giongo L, Gessler C (2007) Highbush blueberry: cultivation, protection, breeding and biotechnology. Eur J Plant Sci Biotech 1:44–56

    Google Scholar 

  • Reed BA, Abdelnour-Esquivel A (1991) The use of zeatin to initiate in vitro cultures of Vaccinium species and cultivars. HortSci 26:1320–1322

    Google Scholar 

  • Rowland LJ, Ogden EL (1992) Use of a cytokinin conjugate for efficient shoot regeneration from leaf sections of highbush blueberry. HortSci 27:1127–1129

    CAS  Google Scholar 

  • Rowland LJ, Ogden EL (1993) Efficient shoot regeneration from leaf sections of highbush blueberry suitable for use in agrobacterium-mediated transformations. Acta Hort 336:193–197

    Article  Google Scholar 

  • Ružić D, Vujović T, Libiakova G, Cerović R, Gajdošova A (2012) Micropropagation in vitro of highbush blueberry (Vaccinium corymbosum L.). J Berry Res 2:97–103

    Google Scholar 

  • Sedlak J, Paprstein F (2009) In vitro multiplication of highbush blueberry (Vaccinium corymbosum L.) cultivars. Acta Hort 810:575–580

    Article  CAS  Google Scholar 

  • Tanaka M, Takamura T, Watanabe H, Endo M, Yanagi T, Okamoto K (1998) In vitro growth of Cymbidium plantlets cultured under super bright and blue light emitting diodes (LEDs). J Hort Sci Biotechnol 73:39–44

    Google Scholar 

  • Tetsumura T, Matsumoto Y, Sato M, Honsho C, Yamashita K, Komatsu H, Sugimoto Y, Kunitake H (2008) Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Sci Hort 119:72–74

    Article  CAS  Google Scholar 

  • Tetsumura T, Kajiwara Y, Honsho C, Yamauchi MS, Sugimoto Y, Kunitake H (2012) Effective micropropagation of rabbiteye blueberries for leaf tea production. Environ Control Biol 50:289–296

    Article  Google Scholar 

  • Wojciechowska R, Długosz-Grochowska O, Kołton A, Zupnik M (2015) Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci Hort 187:80–86

    Article  Google Scholar 

  • Wongnok A, Piluek C, Techasilpitak T, Tantivivat S (2008) Effect of light emitting diodes on micropropagation of Phalaenopsis orchids. Acta Hort 788:149–156

    Article  Google Scholar 

  • Zhang Z, Liu H, Wu L, Li Y (2006) Technical system of blueberry micropropagation in China. Acta Hort 715:421–426

    Article  Google Scholar 

  • Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51:502–509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work, as part of a postdoctoral research project, was funded by the Korea Ministry of Trade, Industry and Energy under the Industrial Technology Research Program (No. N0000004) through the LED Agri-Bio Fusion Technology Research Center of the Chonbuk National University, Iksan, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cao Dinh Hung or Chang-Hee Hong.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by J. van Huylenbroeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, C.D., Hong, CH., Kim, SK. et al. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol Plant 38, 152 (2016). https://doi.org/10.1007/s11738-016-2164-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2164-0

Keywords

Navigation