Skip to main content
Log in

Characterization of a maize ERF gene, ZmERF1, in hormone and stress responses

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

ERFs are downstream component in ethylene signaling pathway and involved in plant’s abiotic stress response. The specific role of ERFs under stress and the molecular mechanism underlying the signaling cross talk still need to be elucidated. This study describes the isolation and characterization of ZmERF1 promoter. There were many cis-regulatory elements related to stress responses in the ZmERF1 promoter sequence. ZmERF1 could be highly induced by ABA and ethylene treatment in maize, suggesting that it might be at the crossroads of multiple hormone signaling pathways. Furthermore, ZmERF1 transgenic Arabidopsis lines (35S::ZmERF1) showed higher salt-tolerant, drought- and heat resistance. Consistently, tolerance-related genes were up-regulated in 35S::ZmERF1 lines compared with the WT plants in Arabidopsis. Overall, ZmERF1 might play an important role in plant resistance to a coercive environment by mediating various physiological processes via ethylene and ABA signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ERF:

Ethylene response factor

MS:

Murashige and Skoog

ORF:

Open reading frame

Pro:

Proline

qPCR:

Real-time quantitative PCR

RT-PCR:

Reverse transcriptase polymerase chain reaction

TFs:

Transcription factors

WT:

Wild type

X-Gluc:

5-bromo-4-chloro-3-indolyl glucuronide

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–136

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Chen T, Yang Q, Zhang X, Ding W, Gruber M (2012) An alfalfa (Medicago sativa L.) ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Rep 31:1737–1746

    Article  CAS  PubMed  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    Article  CAS  PubMed  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Wilson KJ (1991) The GUS gene fusion system. Plant Mol Biol Man 14:1–33

    Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci World J 2014:1–12

    Article  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayana I, Lalonde S, Saini HS (1991) Water-stress-induced ethylene production in wheat: a fact or artifact? Plant Physiol 96:406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETACA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360

    Article  CAS  PubMed  Google Scholar 

  • Quan RD, Hu SJ, Zhang ZL, Zhang HW, Zhang ZJ, Huang RF (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8:476–488

    Article  CAS  PubMed  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157:292–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Gupta S, Rashotte AM (2012) Solanum lycopersicum cytokinin response factors (SlCRFs) genes: characterization of CRF domain containing genes in tomato. J Exp Bot 63:973–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi QL, Dong YB, Qiao DH, Wang QL, Ma ZY, Zhang FF, Zhou Q, Xu H, Deng F, Li YL (2015) Isolation and characterization of ZmERF1 encoding ethylene responsive factor-like protein 1 in popcorn (Zea mays L.). Plant Cell Tissue Organ Cult 120:747–756

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Sun JH, Luo JJ, Tian L, Li CL, Xing Y, Shen YY (2013) New evidence for the role of ethylene in strawberry fruit ripening. J Plant Growth Regul 32:461–470

    Article  CAS  Google Scholar 

  • Wu DY, Ji J, Wang G, Guan CF, Jin C (2014) LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Plant Cell Rep 33:2033–2045

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yan HW, Hong L, Zhou YQ, Jiang HY, Zhu SW, Fan J, Cheng BJ (2013) A genome-wide analysis of the ERF gene family in sorghum. Genet Mol Res 12:2038–2055

    Article  CAS  PubMed  Google Scholar 

  • Zapata PJ, Botella MÁ, Pretel MT, Serrano M (2007) Responses of ethylene biosynthesis to saline stress in seedlings of eight plant species. Plant Growth Regul 53:97–106

    Article  CAS  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Guo XW, Liao X, Wang Q, Liu D, Li TH (2015) Arabidopsis plants overexpressing the MsDREB2C exhibit increased susceptibility to alternaria mali infection. J Plant Growth Regul 34:78–87

    Article  CAS  Google Scholar 

  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Deng DX, Yao QH, Zhang J, Xiong F, Chen JM, Xiong AS (2010) Discovery, phylogeny and expression patterns of AP2-like genes in maize. Plant Growth Regul 62:51–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Hi-Tech Research and Development Program of China (2012AA10A307), the National Natural Science Foundation of China (31101157), the Key Program of Higher Education of Henan (15A210003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by H Li.

Q. Shi and Y. Dong have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Dong, Y., Zhou, Q. et al. Characterization of a maize ERF gene, ZmERF1, in hormone and stress responses. Acta Physiol Plant 38, 126 (2016). https://doi.org/10.1007/s11738-016-2146-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2146-2

Keywords

Navigation