Skip to main content
Log in

The influence of chlorsulfuron herbicide on GABA metabolism and oxidative damage in lentil (Lens culinaris Medik) and wheat (Triticum aestivum L.) seedlings

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Abiotic stresses like salinity, drought, cold, heat, nutrient deficiency, and nutrient toxicity act as a major threats for crops quality and productivity. Herbicides are large category of chemical classes that affect various metabolic pathways and energy cascade in plants. γ-aminobutyric acid (GABA) is proposed to be critically involved in nitrogen metabolism, cytosolic pH regulation, and protection against oxidative imbalance in response to a wide range of abiotic stresses in plants. The objectives of this study were to determine the influence of chlorsulfuron herbicide on GABA metabolism and oxidative damage in two wheat (Triticum aestivum L.) cultivars (Hurani 75 and Um Qayes) and two lentil cultivars (Jordan 1 and Jordan 2) with respect to seed germination, GABA and malondialdehyde (MDA) levels accumulation, transcription of glutamate decarboxylase gene (GAD) mRNA level, total proteins, and carbohydrates contents. A significant increase in GABA, MDA and GAD mRNA level, proteins, and carbohydrates contents under chlorsulfuron treatments in the wheat and lentil cultivars was found in this study. The significant increase in GAD gene expression indicates the increase in GABA level under chlorsulfuron treatments. Hurani 75 and Jordan 2 cultivars showed significant decrease in protein level at high concentration of chlorsulfuron, whereas Um Qayes and Jordan 1 cultivars showed more tolerance under the same treatments. This study indicates that GABA metabolism might be one of multiple integrated signaling and metabolic pathways of herbicide stress adaptation and tolerance in wheat and lentil seedlings. This suggests that GABA molecule may act as a protective and metabolic signaling molecule in carbohydrates and proteins metabolism in plants under herbicidal treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abayo GO, English T, Eplee RE, Kanampiu FK, Ransom JK, Gressel J (1998) Control of parasitic witchweeds (Striga spp) on corn (Zea mays) resistant to acetolactate synthase inhibitors. Weed Sci 46:459–466

    CAS  Google Scholar 

  • Adam G, Duncan H (2002) Influence of diesel fuel on seed germination. Environ Pollut 120(2):363–370

    Article  CAS  PubMed  Google Scholar 

  • Aioub AAA, Gullner G, Kömives T (1993) Peroxidation of lipids in corn plants exposed to heavy metal and herbicide stress. Mozsik G, Emerit I, Feher J, Matkovics B. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Vincze A. Oxygen free radicals and scavengers in the natural sciences. Hungary, pp 57–60

    Google Scholar 

  • Ali GM, Komatsu S (2006) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5(2):396–403

    Article  CAS  PubMed  Google Scholar 

  • AL-Quraan NA, Locy RD, Singh NK (2010) Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana. Plant Physiol Biochem 48:697–702

    Article  CAS  PubMed  Google Scholar 

  • AL-Quraan NA, Sartawea FA, Qaryouti MM (2013) Characterization of -aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L) seedlings under salt and osmotic stress. J Plant Physiol 170(11):1003–1009

    Article  CAS  PubMed  Google Scholar 

  • AL-Quraan NA, AL-Sharbati M, Dababneh Y, AL-Olabi M (2014) Effect of temperature, salt and osmotic stresses on seed germination and chlorophyll contents in lentil (Lens culinaris Medik). Acta Horticulturae 1045:47–54

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. The EMBO J 15(12):2988–2996

    CAS  PubMed  Google Scholar 

  • Beyer E, Duffy M, Hay J, Schlueter D (1988) Sulfulylureas. In: Kearney PC, Kaufman DD (eds) Herbicides: chemistry, degradation and mode of action. Marcell Dekker, Inc. New York, V.3, pp 117–189

  • Bogeat-Triboulot MB, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman J, Polle A, Kangasjarvi J, Dreyer E (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143(2):876–892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9(3):110–115

    Article  CAS  PubMed  Google Scholar 

  • Bouche KB, Busch KB, Fromm H (1999) Plant succinic semialdehyde dehydrogenase cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol 121(2):589–598

    Article  Google Scholar 

  • Bouche N, Fait A, Zik M, Fromm H (2004) The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Mol Biol 55(3):315–325

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2002) Responses to Abiotic Stresses. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists. Rockville, Maryland, V. 40, pp 1158-1203

  • Chatterton NJ, Harrison PA, Thornley WR, Bennett JH (1990) Sucrosyl oligosaccharides and cool temperature growth in 14 forp species. Plant Physiol Biochem 28(2):167–172

    CAS  Google Scholar 

  • Cho SK, Kim J, Park J, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xylogucan endotransglycosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580(13):3136–3144

    Article  CAS  PubMed  Google Scholar 

  • Crawford LA, Bown AW, Breitkreuz KE, Guinel FC (1994) The synthesis of [gamma]-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol 104(3):865–871

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dent CE, Stepka W, Steward FC (1947) Detection of the free amino-acids of plant cells by partition chromatography. Nature 160:682–683

    Article  CAS  PubMed  Google Scholar 

  • Desmaison AM, Tixier M (1986) Amino acids content in germinating seeds and seedlings from Castanea sativa L. Plant Physiol 81:692–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duke SO (1990) Overview of herbicide mechanisms of action. Environ Health Perspect 87:263–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Kreig NR (1994) Methods for general and molecular bacteriology. ASM Washington DC ISBN, 1-55581-048-9, p 518

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoppe HH (1980) Changes in membrane permeability, carbohydrate content, lipid content and lipid composition in root tips from Zea mays after treatment with diclofop-methyl. Z Pflanzenphysiol 100(5):415–426

    Article  CAS  Google Scholar 

  • Hsu FH, Chou CH (1992) Inhibitory effects of heavy metals on seed germination and seedling growth of Miscanthus species. Bot Bull Acad Sin 33(4):335–342

    CAS  Google Scholar 

  • Hu YJ, But PPH (1994) A study on life cycle and response to herbicides of Mikania micrantha. Acta Scientiarum Naturalium Universitatis Sunyatseni 33(4):88–95

    Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics 74(8):1301–1322

    Article  PubMed  Google Scholar 

  • Kozlowski TT, Torrie JH (1965) Effect of soil incorporation of herbicides on seed germination and growth of pine seedlings. Soil Sci 100(2):139–146

    Article  CAS  Google Scholar 

  • Lancien M, Roberts MR (2006) Regulation of Arabidopsis thaliana 14-3-3 Gene Expression by Gamma-aminobutyric Acid. Plant, Cell Environ 29(7):1430–1436

    Article  CAS  Google Scholar 

  • Lee YT, Chang AK, Duggleby RG (1999) Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett 452(3):341–345

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn RS, Lindner RK, Pannell DJ, Powles SB (2002) Resistance and the herbicide resource: perceptions of Western Australian grain growers. Crop Prot 21(10):1067–1075

    Article  Google Scholar 

  • Loureiro I, Rodríguez-García E, Escorial C, García-Baudín JM, Gonzalez-Andujar JL, Chueca MC (2010) Distribution and frequency of resistance to four herbicide modes of action in Lolium rigidum Gaud. accessions randomly collected in winter cereal fields in Spain. Crop Prot 29(11):1248–1256

    Article  CAS  Google Scholar 

  • Ludewig F, Hüser A, Fromm H, Beauclair L, Bouché N (2008) Mutants of GABA transaminase (POP2) suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh) mutants in Arabidopsis. PLoS ONE 3(10):e3383. doi:10.1371/journal.pone.0003383

    Article  PubMed Central  PubMed  Google Scholar 

  • Lukatkin AS, Gar’kovaa AN, Bochkarjovaa AS, Nushtaevaa OV, da Silvab JAT (2013) Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves. Pestic Biochem Physiol 105(1):44–49

    Article  CAS  PubMed  Google Scholar 

  • MacGregor KB, Shelp BJ, Peiris S, Bown AW (2003) Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae. J Chem Ecol 29(9):2177–2182

    Article  CAS  PubMed  Google Scholar 

  • Malkawi HI, AL-Quraan NA, Owais WM (2003) Acetolactate synthase activity and chlorsulfuron sensitivity of gamma-irradiated lentil (Lens culinaris Medik) cultivars. J Agr Sci 140(1):83–91

    Article  CAS  Google Scholar 

  • Mayer RR, Cherry JH, Rhodes D (1990) Effect of heat shock on amino acid metabolism of cowpea cells. Plant Physiol 94(2):796–810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57(14):3755–3766

    Article  CAS  PubMed  Google Scholar 

  • McLean MD, Yevtushenko DP, Deschene A, Van Cauwenberghe OR, Makhmoudova A, Potter JW, Bown AW, Shelp BJ (2003) Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root-knot nematode. Mol Breed 11(4):277–285

    Article  CAS  Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stresses in plants: a complex relationship. Front Plant Sci 5:175. doi:10.3389/fpls.2014.00175

    Article  PubMed Central  PubMed  Google Scholar 

  • Qian H, Hu H, Mao Y, Ma J, Zhang A, Liu W, Fu Z (2009) Enantioselective phytotoxicity of the herbicide imazethapyr in rice. Chemosphere 76(7):885–892

    Article  CAS  PubMed  Google Scholar 

  • Radwan DEM (2012) Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pestic Biochem Physiol 102(2):182–188

    Article  CAS  Google Scholar 

  • Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. doi:10.1186/1471-2229-10-20

    PubMed Central  PubMed  Google Scholar 

  • Rengel Z, Wheal MS (1997) Herbicide chlorsulfuron decreases growth of fine roots and micronutrient uptake in wheat genotypes. J Exp Bot 48(4):927–934

    Article  CAS  Google Scholar 

  • Rhodes D, Handa S, Bressan RA (1986) Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol 82(4):890–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize quantitative variation and polypeptide identification. Plant Physiol 117(4):1253–1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ries SK, Chmiel H, Dilley DR, Filner P (1967) The increase in nitrate reductase activity and protein content of plants treated with simazine. Proc Natl Acad Sci USA 58(2):526–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rother PA, Mckrecher RB (1989) Crop responses to applications of both chlorsulfuron and monoammonium phosphate. Plant Soil 116:177–182

    Article  CAS  Google Scholar 

  • Saladin G, Magné C, Clément C (2003) Impact of flumioxazin herbicide on growth and carbohydrate physiology in Vitis vinifera L. Plant Cell Rep 21(8):821–827

    CAS  PubMed  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4(11):446–452

    Article  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9(2):214–219

    Article  CAS  PubMed  Google Scholar 

  • Streeter JG, Thompson JF (1972) Anaerobic accumulation of γ-aminobutyric acid and alanine in radish leaves (Raphanus sativus L.). Plant Physiol 49(4):572–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang M, Zhou Q (2006) Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum L.). Ecotoxicol Environ Saf 64(2):190–197

    Article  CAS  PubMed  Google Scholar 

  • West SH, Hanson JB, Key JL (1960) Effect of 2,4-Dichlorophenoxyacetic acid on nucleic acid and protein content of seedling tissue. Weeds 8(3):333–340

    Article  Google Scholar 

  • Wright TR, Bascomb NF, Stuner SF, Penner D (1998) Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugar beet (Beta vulgaris) somatic cell selections. Weed Sci 46:13–23

    CAS  Google Scholar 

  • Xu H, Liao P, Xiao J, Zhang Q, Dong Y, Kai G (2010) Molecular cloning and characterization of glutamate decarboxylase cDNA from the giant-embryo Oryza sativa. Arch Biol Sci 62(4):873–879

    Article  Google Scholar 

  • Yang R, Guo Q, Gu Z (2013) GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia. Food Chem 136(1):152–159

    Article  CAS  PubMed  Google Scholar 

  • Youn YS, Park JK, Jang HD, Woo Rhee YW (2011) Sequential hydration with anaerobic and heat treatment increases GABA (γ-aminobutyric acid) content in Wheat. Food Chem 129(4):1631–1635

    Article  CAS  Google Scholar 

  • Zabalza A, Orcaray L, Gaston S, Royuela M (2004) Carbohydrate accumulation in leaves of plants treated with the herbicide chlorsulfuron or imazethapyr is due to a decrease in sink strength. J Agric Food Chem 52(25):7601–7606

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Bown AW (1997) The Rapid Determination of gamma-aminobutyric Acid. Phytochemistry 44(6):1007–1009

    Article  CAS  Google Scholar 

  • Zhu L, Peng Q, Song F, Jiang Y, Sun C, Zhang J, Huang D (2010) Structure and regulation of the gab gene cluster, involved in the γ-aminobutyric acid shunt, are controlled by a σ54 factor in Bacillus thuringiensis. J Bacteriol 192(1):346–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deanship of Research, Jordan University of Science and Technology, Jordan grant number 160/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisreen A. AL-Quraan.

Additional information

Communicated by H. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Quraan, N.A., Ghunaim, A.I. & Alkhatib, R.Q. The influence of chlorsulfuron herbicide on GABA metabolism and oxidative damage in lentil (Lens culinaris Medik) and wheat (Triticum aestivum L.) seedlings. Acta Physiol Plant 37, 227 (2015). https://doi.org/10.1007/s11738-015-1979-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1979-4

Keywords

Navigation