Skip to main content
Log in

Identification and characterization of a small heat shock protein 17.9-CII gene from faba bean (Vicia faba L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

We cloned and characterized the full-length coding sequence of a small heat shock protein 17.9 gene from faba bean encoding 160 amino acids and containing the conserved α-crystallin domain at the C-terminus. Homology and phylogenetic analysis suggested its proximity with the class II sHsp members of fabaceae family. Therefore, we name this gene as VfHsp17.9-CII. The VfHsp17.9-CII transcript showed a clear heat stress induction pattern in leaves of young seedlings and flowering plants. Transient expression of VfHsp17.9-CII fused with green fluorescent protein reporter indicated its nuclear localization. Overexpression of recombinant VfHsp17.9-CII protein in Escherichia coli cells increased tolerance of the bacterial cells to heat and arsenic stresses. The reduction of faba bean pollen viability in response to heat stress correlated with the accumulation pattern of VfHsp17.9-CII transcript in heat stressed pollen. It is suggested that VfHsp17.9-CII protein plays a key role in heat and heavy metal stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal M, Katiyar-Agarwal S, Grover A (2002) Plant Hsp100 proteins: structure, function and regulation. Plant Sci 163:397–405

    Article  CAS  Google Scholar 

  • Ahsan N, Donnart T, Nouri M-Z, Komatsu S (2010) Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res 9:4189–4204

    Article  CAS  PubMed  Google Scholar 

  • Al-Suhaibani NA (2009) Influence of early water deficit on seed yield and quality of faba bean under arid environment of Saudi Arabia. Am-Eurasian J Agric Environ Sci 5(5):649–654

    CAS  Google Scholar 

  • Atkinson BG, Raizada M, Bouchard RA, Frappier JRH, Walden DB (1993) The independent stage-specific expression of the 18 kDa heat shock protein genes during microsporogenesis in Zea mays L. Dev Genet 14:15–26

    Article  CAS  PubMed  Google Scholar 

  • Avola G, Cavallaro V, Patanè Riggi E (2008) Gas exchange and photosynthetic water use efficiency in response to light, CO2 concentration and temperature in Vicia faba. J Plant Physiol 165:796–804

    Article  CAS  PubMed  Google Scholar 

  • Burke JJ, Chen J (2015) Enhancement of reproductive heat tolerance in plants. PLoS One 10(4):e0122933. doi:10.1371/journal.pone.0122933

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen X, Lin S, Liu Q, Huang J, Zhang W, Lin J, Wang Y, Ke Y, He H (2014) Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochim Biophys Acta 1844:818–828

    Article  CAS  PubMed  Google Scholar 

  • Derocher AE, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol 96:10381047

    Article  Google Scholar 

  • Dietrich PS, Bouchard RA, Casey ES, Sinibaldi RM (1991) Isolation and characterization of a small heat shock protein gene from maize. Plant Physiol 96:1268–1276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60(13):3891–3908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205–206:38–47

    Article  PubMed  Google Scholar 

  • Gutierrez N, Giménez MJ, Palomino C, Avila CM (2011) Assessment of candidate reference genes for expression studies in Vicia faba L. by real-time quantitative PCR. Mol Breeding 28:13–24

    Article  Google Scholar 

  • Hamada AM (2001) Alteration in growth and some relevant metabolic processes of broad bean plants during extreme temperatures exposure. Acta Physiol Planta 23(2):193–200

    Article  Google Scholar 

  • Hopf N, Plesofsky-Vig N, Brambl R (1992) The heat shock response of pollen and other tissues of maize. Plant Mol Biol 19:623–630

    Article  CAS  PubMed  Google Scholar 

  • Ischebeck T, Valledort L, Lyon D, Ging S, Nagler M, Meijon M, Egelhofer V, Wecjwerth W (2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 13(1):295–310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61(1):143–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keeler SJ, Boettger CM, Haynes JG, Kuches KA, Johnson MM, Thureen DL, Keeler CL Jr, Kitto SL (2000) Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiol 123:1121–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using Phyre server. Nat Protocols 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Kitano M, Saitoh K, Kuroda K (2006) Effects of high temperature on flowering and pod set in soybean. Sci Rep Fac Agri, Okayama Univ 95:49–55

    Google Scholar 

  • Lavania D, Dhingra A, Siddiqui MH, Al-Whaibi MH, Grover A (2015) Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates. Plant Physiol Biochem 86:100–108

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    Article  CAS  PubMed  Google Scholar 

  • Lee L-Y, Fang M-J, Kuang L-Y, Gelvin SB (2008) Vectors for multicolor bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods. doi:10.1186/1746-4811-4-24

    PubMed  Google Scholar 

  • Lee S-H, Lee K-W, Lee D-G, Son D, Park SJ, Kim K-Y, Park HS, Cha J-Y (2014) Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnol Lett 37:881–890

    Article  PubMed  Google Scholar 

  • Lopes-Caitar VS, de Carvalho MC, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, Abdelnoor RV, Marcelino-Guimarães FC (2013) Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genom. doi:10.1186/1471-2164-14-577

    Google Scholar 

  • Mu C, Wang S, Zhang S, Pan J, Chen N, Li X, Wang Z, Liu H (2011) Small heat shock protein LimHSP16.45 protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meiotic prophase I in David Lily. Plant Cell Rep 30:1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Nieden UZ, Neumann D, Bucka A, Nover L (1995) Tissue-specific localization of heat-stress proteins during embryo development. Planta 196:530–538

    Google Scholar 

  • Patrick JW, Stoddard FI (2010) Physiology of flowering and grain filling in faba bean. Field Crop Res 115:234–242

    Article  Google Scholar 

  • Rubiales D (2010) Faba beans in sustainable agriculture. Field Crops Res 115:201–202

    Article  Google Scholar 

  • Sarkar NK, Kim Y-K, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genom. doi:10.1186/1471-2164-10-393

    Google Scholar 

  • Sarkar NK, Kundnani P, Grover A (2013a) Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperon 18(4):427–437

    Article  CAS  Google Scholar 

  • Sarkar NK, Thapar U, Kundnani P, Panwar P, Grover A (2013b) Functional relevance of J-protein family of rice (Oryza sativa). Cell Stress Chaperon 18(3):321–331

    Article  CAS  Google Scholar 

  • Sarkar NK, Kim Y-K, Grover A (2014) Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol Biol 84(1–2):125–143

    Article  CAS  PubMed  Google Scholar 

  • Scharf K-D, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperon 6:225–237

    Article  CAS  Google Scholar 

  • Simões-Araújo JL, Rumajanek NG, Margis-Pinheiro M (2003) Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz J Plant Physiol 15(1):33–41

    Article  Google Scholar 

  • Singh A, Grover A (2010) Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine. Plant Mol Biol 74:395–404

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Mittal D, Lavania D, Agarwal M, Mishra RC, Grover A (2012) OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.). Cell Stress Chaperon 17:243–254

    Article  CAS  Google Scholar 

  • Soto A, Allona I, Collada C, Guevara M-A, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120:521–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186

    Article  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wan Q, Whang I, Lee J (2012) Molecular and functional characterization of HdHSP20: a biomarker of environmental stresses in disk abalone Haliotis discus discus. Fish Shellfish Immunol 33:48–59

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, Chen X, Que S, He H (2014) Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70 s as a case study. BMC Genom. doi:10.1186/1471-2164/15/344

    Google Scholar 

  • Wei LQ, Wen YX, Zhu YD, Su Z, Xue YB, Wang T (2010) Genome scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genom. doi:10.1186/471-2164-11-338

    Google Scholar 

  • Yeh C-H, Linda P-F, Yeh K-W, Lin W-C, Chen Y-M, Lin C-Y (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci USA 94:10967–10972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RK is thankful to University Grants Commission, India for fellowship. DL is thankful to Council of Scientific and Industrial Research, Government of India for the research fellowship award. MHS and MHA-W thank project funding from National Plan for Science and Technology Program, Saudi Arabia (Project No. 11-BIO1922-02). AG gratefully acknowledges Visiting Professorship of King Saud University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Grover.

Additional information

Communicated by M. Hajduch.

R. Kumar and D. Lavania contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Lavania, D., Singh, A.K. et al. Identification and characterization of a small heat shock protein 17.9-CII gene from faba bean (Vicia faba L.). Acta Physiol Plant 37, 190 (2015). https://doi.org/10.1007/s11738-015-1943-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1943-3

Keywords

Navigation