Skip to main content
Log in

The role of xylopodium in Na+ exclusion and osmolyte accumulation in faveleira [Cnidoscolus phyllacanthus (d. arg.) Pax et K. Hoffm] under salt stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate physiological and biochemical responses of faveleira under salinity. Plants were grown in nutrient solution containing 0, 50, 100 or 150 mM NaCl. After 8 days of stress, plants were harvested and separated into roots, xylopodium, stem + petiole (SP), and basal, median and apical leaves. Salinity reduced the dry weight of all plant parts, although the indicators of water status were not changed. Salt stress increased the content of Na+ in the different plant parts, especially in xylopodium, in which it increased approximately eightfold while the content of K+ decreased by approximately 40 % under 150 mM NaCl. As a consequence, the K+/Na+ ratio decreased in all plant organs. In stressed plants, the content of soluble sugars was increased in the roots, SP and leaf strata and the content of soluble proteins increased in all organs. The content of total free amino acids increased in the roots, SP and apical leaves, while the proline content increased in all organs except in xylopodium. It is suggested that the xylopodium may be involved in a mechanism of exclusion and/or compartmentalization of Na+ in faveleira under salinity to avoid ionic toxicity in the leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta JA, Faz A, Jansen B, Kalbitz K, Martínez-Martínez S (2011) Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. J Arid Environ 75:1056–1066. doi:10.1016/j.jaridenv.2011.05.006

    Article  Google Scholar 

  • Alves AAC, Setter TL (2004) Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Ann Bot 94:605–613. doi:10.1093/aob/mch179

    Article  PubMed  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30. doi:10.1080/0735-260291044160

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 6:3–16. doi:10.1016/j.plantsci.2003.10.024

    Article  Google Scholar 

  • Babita M, Maheswari M, Rao LM, Shanker AK, Rao DG (2010) Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ Exp Bot 69:243–249. doi:10.1016/j.envexpbot.2010.05.006

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2009) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Chang I, Cheng K, Huang P, Lin Y, Cheng L, Cheng T (2011) Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure. Acta Physiol Plant 34:1165–1176. doi:10.1007/s11738-011-0913-7

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • D’Souza MRD, Devaraj VR (2010) Biochemical responses of Hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol Plant 32:341–353. doi:10.1007/s11738-009-0412-2

    Article  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818. doi:10.1104/pp.104.057307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Díaz-López L, Gimeno V, Lidón V, Simón I, Martínez V, García-Sánchez F (2012) The tolerance of Jatropha curcas seedlings to NaCl: an ecophysiological analysis. Plant Physiol Biochem 54:34–42

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Elavumootil OC, Martin JP, Moreno ML (2003) Changes in sugars, sucrose synthase activity and proteins in salinity tolerant callus and cells suspension cultures of Brassica oleraceae L. Biol Plant 46:7–12. doi:10.1023/A:1022389428782

    Article  Google Scholar 

  • Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143. doi:10.1111/j.1399-3054.2011.01450.x

    Article  PubMed  CAS  Google Scholar 

  • Esteves BS, Suzuki MS (2008) Efeito da salinidade sobre as plantas. Oecol Bras 4:662–679

    Google Scholar 

  • Fini A, Bellasio C, Pollastri S, Tattini M, Ferrini F (2013) Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J Arid Environ 89:21–29. doi:10.1016/j.jaridenv.2012.10.009

    Article  Google Scholar 

  • Gierth M, Maser P (2007) Potassium transporters in plants: involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356. doi:10.1016/j.febslet.2007.03.035

    Article  PubMed  CAS  Google Scholar 

  • Gorai M, Neffati M (2011) Osmotic adjustment, water relations and growth attributes of the xero-halophyte Reaumuria vermiculata L. (Tamaricaceae) in response to salt stress. Acta Physiol Plant 33:1425–1433. doi:10.1007/s11738-010-0677-5

    Article  CAS  Google Scholar 

  • Heidari-Sharifabad H, Mirzaie-Nodoushan H (2006) Salinity-induced growth and some metabolic changes in three Salsola species. J Arid Environ 67:715–720. doi:10.1016/j.jaridenv.2006.03.018

    Article  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–2462. doi:10.1104/pp.104.046664

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Imada S, Yamanaka N, Tamai S (2009) Effects of salinity on the growth, Na partitioning, and Na+ dynamics of a salt-tolerant tree, Populus alba L. J Arid Environ 73:245–251. doi:10.1016/j.jaridenv.2008.10.006

    Article  Google Scholar 

  • Irigoyen JJ, Emerich DW, Sanchez-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfafa (Medicago sativa) plants. Physiol Plant 84:55–66. doi:10.1111/j.1399-3054.1992.tb08764.x

    Article  CAS  Google Scholar 

  • Jenci A, Natarajan S (2009) Growth and organic constituent variations with salinity in Excoecaria agallocha L., an important halophyte. Bot Res Intl 1:50–54

    Google Scholar 

  • Kholova J, Sairam RK, Meena RC (2010) Osmolytes and metal íons accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiol Plant. doi:10.1007/s11738-009-0424-y

    Google Scholar 

  • Köskerosglu S, Tuna AL (2010) The investigation on accumulation levels of proline and stress parameters of the maize (Zea mays L.) plants under salt and water stress. Acta Physiol Plant 32:541–549

    Article  Google Scholar 

  • Maathius FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: basis of cellular K+/Na+ ratios. Ann Bot 84:123–133. doi:10.1006/anbo.1999.0912

    Article  Google Scholar 

  • Maathius FJM, Dawn Verlin F, Smith FA, Sanders D, Fernandez JA, Walker NA (1996) The physiological relevance of the Na+ coupled K+ transport. Plant Physiol 112:1609–1616. doi:10.1104/pp.112.4.1609

    Google Scholar 

  • Macêdo CEC, Van Sint Jan V, Kinet JM, Lutts S (2009) Effects of aluminium on root growth and apical root cells in rice (Oryza sativa L.) cultivars. Reliability of screening tests to detect Al resistance at the seedling stage. Acta Physiol Plant 31:1255–1262. doi:10.1007/s11738-009-0362-8

    Article  Google Scholar 

  • Maia JM, Macêdo CEC, Voigt EL, Freitas JBS, Silveira JAG (2010) Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. Biol Plant 54:159–163. doi:10.1007/s10535-010-0026-y

    Article  CAS  Google Scholar 

  • Maia JM, Voigt EL, Ferreira-Silva SL, Fontenele AV, Macêdo CEC, Silveira JAG (2013) Differences in cowpea root growth triggered by salinity and dehydration are associated with oxidative modulation involving types I and III peroxidases and apoplastic ascorbate. J Plant Growth Regul 32:376–387. doi:10.1007/s00344-012-9308-2

    Article  CAS  Google Scholar 

  • Meloni DA, Gulotta MR, Martínez CA (2008) Salinity tolerance in Schinopsis quebracho colorado: Seed germination, growth, ion relations and metabolic responses. J Arid Environ 72:785–1792. doi:10.1016/j.jaridenv.2008.05.003

    Article  Google Scholar 

  • Mohammdkani N, Heidari R (2008) Effects of drought stress on soluble proteins in two maize varieties. Turk J Biol 32:23–30

    Google Scholar 

  • Morais DL, Viégas RA, Silva LMM, Lima AR Jr, Costa RCL, Rocha IMA, Silveira JAG (2007) Acumulação de íons e metabolismo de N em cajueiro anão em meio salino. Rev Bras Eng Agríc Ambient 11:125–133. doi:10.1590/S1415-43662007000200001

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress Plant. Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  CAS  Google Scholar 

  • Munns R, Weir R (1981) Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficit at two light levels. Aust J Plant Physiol 8:93–105. doi:10.1071/PP9810093

    Article  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi:10.1093/jxb/erj100

    Article  PubMed  CAS  Google Scholar 

  • Nio SA, Cawthray GR, Wade LJ, Colmer TD (2011) Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiol Biochem 49:1126–1137. doi:10.1016/j.plaphy.2011.05.011

    Article  PubMed  CAS  Google Scholar 

  • Oueslati S, Karray-Bouraoui N, Atia H, Rabhi M, Ksouri R, Lachasal M (2010) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant 32:289–296. doi:10.1007/s11738-009-0406-0

    Article  CAS  Google Scholar 

  • Patakas A, Nikolaou N, Ziozioiu E, Radoglou K, Noitsakis BX (2002) The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci 163:361–367. doi:10.1016/S0168-9452(02)00140-1

    Article  CAS  Google Scholar 

  • Peoples MB, Faizah AW, Reakasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Center for International Agricultural Research, Canberra

    Google Scholar 

  • Ribeiro Filho NM, Florêncio IM, Brito AC, Dantas JP, Cavalcanti MT (2011) Avaliação nutricional de raízes de faveleira e cenoura em períodos equidistantes de coleta. Rev Bras Prod Agroind 13:163–168

    Google Scholar 

  • Shabala L, Mackay A, Tian Y, Jacobsen S, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant 1:1–13. doi:10.1111/j.1399-3054.2012.01599.x

    Google Scholar 

  • Silva FAM, Melloni R, Miranda JRP, Carvalho JG (2000) Efeito do estresse salino sobre a nutrição mineral e o crescimento de mudas de aroeira (Myracrodruon urundeuva) cultivadas em solução nutritiva. Revista Cerne 6:52–59

    Google Scholar 

  • Silva MBR, Batista RC, Lima VLA, Barbosa EM, Barbosa MFN (2005) Crescimento de plantas jovens da espécie florestal favela (Cnidoscolus phyllacanthus Pax et K. Hoffm) em diferentes níveis de salinidade da água. Rev Biol Cienc Terra 5:1–14

    Google Scholar 

  • Silva EN, Silveira JAG, Rodrigues CRF, Lima CS, Viégas RA (2009) Contribuição de solutos inorgânicos no ajustamento osmótico de pinhão-manso submetido à salinidade. Pesq Agropecu Bras 44:437–445. doi:10.1590/S0100-204X2009000500002

    Article  Google Scholar 

  • Silva EN, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JAG (2010) Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J Arid Environ 74:1130–1137. doi:10.1016/j.jaridenv.2010.05.036

    Article  Google Scholar 

  • Silveira JAG, Viégas RA, Rocha IMA, Monteiro-Moreira ACO, Moreira RM, Oliveira JTA (2003) Proline accumulation and glutamine synthetase are increased by salt-induced proteolysis in cashew leaves. J Plant Physiol 160:115–123. doi:10.1078/0176-1617-00890

    Article  PubMed  CAS  Google Scholar 

  • Silveira JAG, Junior JM, Silva EN, Ferreira-Silva SL, Aragão RM, Viégas RA (2012) Salt resistance in two cashew species is associated with accumulation of organic and inorganic solutes. Acta Physiol Plant 34:1629–1637. doi:10.1007/s11738-012-0957-3

    Article  CAS  Google Scholar 

  • Slavick B (1974) Methods of studying plant water relations. Springet, New York

    Book  Google Scholar 

  • Sousa AEC, Gheyi HR, Correia KG, Soares FAL, Nobre RG (2011) Crescimento e consumo hídrico de pinhão manso sob estresse salino e doses de fósforo. Rev Cienc Agron 42:310–318. doi:10.1590/S1806-66902011000200008

    Article  Google Scholar 

  • Sturm A, Tang G-Q (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407. doi:10.1016/S1360-1385(99)01470-3

    Article  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058

    Article  PubMed  CAS  Google Scholar 

  • Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Belles JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481. doi:10.1016/j.jaridenv.2003.12.003

    Article  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. doi:10.1016/S1369-5266(03)00085-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Petrobrás for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Elizabeth Costa de Macêdo.

Additional information

Communicated by S. Renault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, M.D.d.M., Bezerra, L.L., Dantas, C.V.S. et al. The role of xylopodium in Na+ exclusion and osmolyte accumulation in faveleira [Cnidoscolus phyllacanthus (d. arg.) Pax et K. Hoffm] under salt stress. Acta Physiol Plant 36, 2871–2882 (2014). https://doi.org/10.1007/s11738-014-1657-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1657-y

Keywords

Navigation