Skip to main content
Log in

Application of Arabidopsis tissue-specific CRUC promoter in the Cre/loxP self-excision strategy for generation of marker-free oilseed rape: potential advantages and drawbacks

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The aim of the present study was to explore the usability of Arabidopsis cruciferin C (CRUC) promoter in the Cre/loxP self-excision strategy with the minimal rate of an ectopic expression of the cre recombinase. For this, a plant transformation vector containing the gus reporter gene driven by the light-sensitive Lhca3.St1 instead of double dCaMV 35S promoter and one pair loxP sites flanking the cre and the nptII genes was prepared. Agrobacterium-mediated transformations of three economically important oilseed rape (Brassica napus L.) cultivars Campino, Hunter and Topas as well as tobacco (Nicotiana tabacum L.) as a reference system were performed. The integration of the T-DNA into genome of all Brassica cultivars was accompanied by DNA deletions/rearrangements on the both T-DNA ends. The disruption of the Cre/loxP recombination system in oilseed rape was observed. On the contrary, no such events were detected in tobacco. The applied strategy did restrict an ectopic CRUC activity to some extent and a set of transgenic tobacco T0 plants without premature excision event was obtained. Our data showed that a choice of the promoter can limit undesired activation of the Cre/loxP cassette.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Annadana S, Mlynarova L, Udayakumar M, de Jong J, Nap JP (2002) The potato Lhca3.St.1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters. Mol Breed 8:335–344

    Article  Google Scholar 

  • Bai X, Wang Q, Chu C (2008) Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res 17:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Becerra C, Puigdomenech P, Vicient CM (2006) Computational and experimental analysis identifies Arabidopsis genes specifically expressed during early seed development. Bmc Genomics 7:38

    Google Scholar 

  • Bondarenko VA, Liu YV, Jiang YI, Studitsky VM (2003) Communication over a large distance: enhancers and insulators. Biochem Cell Biol 81:241–251

    Article  CAS  PubMed  Google Scholar 

  • Boszoradova E, Libantova J, Matusikova I, Poloniova Z, Jopcik M, Berenyi M, Moravcikova J (2011) Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell Tiss Org 107:317–323

    Article  CAS  Google Scholar 

  • Chen J, Greenblatt IM, Dellaporta SL (1992) Molecular analysis of Ac transposition and DNA-replication. Genetics 130:665–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eckner R, Ellmeier W, Birnstiel ML (1991) Mature messenger-RNA 3′ end formation stimulates RNA export from the nucleus. EMBO J 10:3513–3522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gidoni D, Srivastava V, Carmi N (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev Biol Plant 44:457–467

    Article  CAS  Google Scholar 

  • Gilbertson L (2003) Cre-loxrecombination: cre-active tools for plant biotechnology. Trends Biotechnol 21:550–555

    Article  CAS  PubMed  Google Scholar 

  • Hamilton DL, Abremski K (1984) Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol 178:481–486

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusions—beta-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO J 6:3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CamMV-35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Kirik A, Salomon S, Puchta H (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO J 19:5562–5566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. P Natl Acad Sci USA 95:7203–7208

    Article  CAS  Google Scholar 

  • Kopertekh L, Broer I, Schiemann J (2009) Developmentally regulated site-specific marker gene excision in transgenic B. napus plants. Plant Cell Rep 28:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Xing A, Moon BP, Burgoyne SA, Guida AD, Liang H, Lee C, Caster CS, Barton JE, Klein TM, Falco SC (2007) A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants. Plant Mol Biol 65:329–341

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Chen Z (2007) Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 19:943–958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotech J 5:263–274

    Article  CAS  Google Scholar 

  • Machida Y, Usami S, Yamamoto A, Niwa Y, Takebe I (1986) Plant-inducible recombination between the 25 bp border sequences of T-DNA in Agrobacterium-tumefaciens. Mol Gen Genet 204:374–382

    Article  CAS  Google Scholar 

  • Mietkiewska E, Dees D, Nap JP (2000) Seed specific GUS gene expression directed by the Arabidopsis cruciferin C promoter in tobacco and Arabidopsis. In. Session Plant Lipid Metabolisms, 6 th International Congress of Plant Molecular Biology, ISPMB, June 18–24, Quebec, Canada, 20–14

  • Mlynarova L, Nap JP (2003) A self-excising Cre recombinase allows efficient recombination of multiple ectopic heterospecific lox sites in transgenic tobacco. Transgenic Res 12:45–57

    Article  CAS  PubMed  Google Scholar 

  • Mlynarova L, Loonen A, Heldens J, Jansen RC, Keizer P, Stiekema WJ, Nap JP (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6:417–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mlynarova L, Conner AJ, Nap JP (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotech J 4:445–452

    Article  CAS  Google Scholar 

  • Moravcikova J, Libantova J, Matusikova I, Libiakova G, Nap JP, Mlynarova L (2003) Genetic transformation of Slovak cultivar of potato (Solanum tuberosum L.): efficiency and the behaviour of the transgene. Biologia 58:1075–1080

    CAS  Google Scholar 

  • Moravcikova J, Vaculkova E, Bauer M, Libantova J (2008) Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theor Appl Genet 117:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Müller AE, Kamisugi Y, Gruneberg R, Niedenhof I, Horold RJ, Meyer P (1999) Palindromic sequences and A plus T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J Mol Biol 291:29–46

    Article  PubMed  Google Scholar 

  • Murashige I, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Google Scholar 

  • Nap JP, Vanspanje M, Dirkse WG, Baarda G, Mlynarova L, Loonen A, Grondhuis P, Stiekema WJ (1993) Activity of the promoter of the Lhca3.st.1 gene, encoding the potato apoprotein-2 of the light-harvesting complex of photosystem-i, in transgenic potato and tobacco plants. Plant Mol Biol 23:605–612

    Article  CAS  PubMed  Google Scholar 

  • Orel N, Puchta H (2003) Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol Biol 51:523–531

    Article  CAS  PubMed  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Botany 56:1–14

    Article  CAS  Google Scholar 

  • Singer SD, Cox KD, Liu Z (2010) Both the constitutive Cauliflower Mosaic Virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana. Plant Mol Biol 74:293–305

    Article  CAS  PubMed  Google Scholar 

  • Singer SD, Cox KD, Liu Z (2011) Enhancer-promoter interference and its prevention in transgenic plants. Plant Cell Rep 30:723–731

    Article  CAS  PubMed  Google Scholar 

  • Stuitje AR, Verbree EC, van der Linden KH, Mietkiewska EM, Nap JP, Kneppers TJA (2003) Seed-expressed fluorescent proteins as versatile tools for easy (co)transformation and high-throughput functional genomics in Arabidopsis. Plant Biotech J 1:301–309

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy INBL (2012) Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci 37:167–197

    Article  CAS  PubMed  Google Scholar 

  • Vaculkova E, Moravcikova J, Matusikova I, Bauer M, Libantova J (2007) A modified low copy number binary vector pUN for Agrobacterium-mediated plant transformation. Biol Plantarum 51:538–540

    Article  CAS  Google Scholar 

  • Verweire D, Verleyen K, De Buck S, Claeys M, Angenon G (2007) Marker-free Transgenic plants through genetically programmed auto-excision. Plant Physiol 145:1220–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yano K-I, Morotomi-Yano K, Adachi N, Akiyama H (2009) Molecular mechanism of protein assembly on DNA double-strand breaks in the non-homologous end-joining pathway. J Radiat Res 50:97–108

    Article  CAS  PubMed  Google Scholar 

  • Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221:523–530

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3 ‘ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol R 63:405–445

    CAS  Google Scholar 

  • Zheng X, Deng W, Luo K, Duan H, Chen Y, McAvoy R, Song S, Pei Y, Li Y (2007) The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep 26:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:4335–4338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the EEA Financial Mechanisms SAV-EHP-2008-02-01 and by the Slovak Research and Development Agency under the Contract No. APVV-0197-10.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Moravčíková.

Additional information

Communicated by Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boszorádová, E., Libantová, J., Matušíková, I. et al. Application of Arabidopsis tissue-specific CRUC promoter in the Cre/loxP self-excision strategy for generation of marker-free oilseed rape: potential advantages and drawbacks. Acta Physiol Plant 36, 1399–1409 (2014). https://doi.org/10.1007/s11738-014-1518-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1518-8

Keywords

Navigation