Skip to main content
Log in

Primary and secondary somatic embryogenesis in Chrysanthemum (Chrysanthemum morifolium) cv. ‘Baeksun’ and assessment of ploidy stability of somatic embryogenesis process by flow cytometry

Acta Physiologiae Plantarum Aims and scope Submit manuscript

An Erratum to this article was published on 23 February 2014

Abstract

We developed an efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from petal explant of Chrysanthemum (Chrysanthemum morifolium) cv. ‘Baeksun’. Somatic embryogenesis was induced from petal explants on the Murashige and Skoog (MS) medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 3.0 mg l−1 6-benzyladenine (BA), yielding the highest mean number of embryos (56.3) per explant after 5 weeks of culture. We evaluated the effects of basal medium and various concentrations of sucrose on the proliferation of secondary somatic embryos. MS medium was observed to be more effective in promoting the proliferation of somatic embryos than half-strength Murashige and Skoog (1/2MS). In addition, 1 % sucrose was also found to be the best in induction of secondary embryogenesis. The highest germination rate (70 %) of the somatic embryos was observed on the MS medium containing 0.2 mg l−1 α-naphthalene acetic acid and 1 g l−1 activated charcoal (AC). Shoots elongated rapidly and roots developed well on hormone-free MS medium with 1 g l−1 AC and successfully acclimated in the greenhouse. Flow cytometric analysis of the primary somatic embryos, secondary somatic embryos, and the somatic embryo-obtained plants along with the parent grown in the greenhouse showed that they all had same identical peaks, indicating that there was no variation of ploidy level during the regeneration process. We expect that our report would be useful for micropropagation and Agrobacterium-mediated genetic transformation studies of this cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

MS:

Murashige and Skoog (1962)

1/2MS:

Half-strength Murashige and Skoog

2, 4-D:

2, 4-Dichlorophenoxyacetic acid

AC:

Activated charcoal

TDZ:

Thidiazuron

BA:

6-Benzyladenine

IAA:

3-Indole acetic acid

GA3 :

Gibberellic acid

NAA:

α-Naphthalene acetic acid

PGRs:

Plant growth regulators

KN:

Kinetin

FAA:

Formalin acetic acid

References

  • Agarwal S, Kanwar K, Sharma DR (2004) Factors affecting secondary somatic embryogenesis and embryo maturation in Morus alba L. Sci Hortic 102:359–368

    Article  Google Scholar 

  • Bao Y, Liu G, Shi X, Xing W, Ning G, Liu J, Bao M (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrid ‘Samantha’. Plant Cell Tiss Organ Cult 109:411–418

    Article  CAS  Google Scholar 

  • Clarindo WR, Carvalho CR, Arau′jo FS, Abreu IS, Otoni WC (2008) Recovering polyploid papaya in vitro regenerants as screened by flow cytometry. Plant Cell Tiss Organ Cult 92:207–214. doi:10.1007/s11240-007-9325-1

    Article  Google Scholar 

  • Eapen S, George L (1993) Somatic embryogenesis in peanut: influence of plant growth regulators and sugars. Plant Cell Tiss Organ Cult 35:151–156

    Article  CAS  Google Scholar 

  • Endemann M, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant (Prague) 44:339–345. doi:10.1023/A:1012426306493

    Article  Google Scholar 

  • Fiuk A, Rybczyn′ski JJ (2008) Genotype and plant growth regulator dependent response of somatic embryogenesis from Gentiana spp. leaf explants In Vitro Cell. Dev Biol Plant 44:90–99. doi:10.1007/s11627-008-9124-3

    Article  CAS  Google Scholar 

  • Gesteira AS, Otoni WC, Barros EG, Moreira MA (2002) RAPDbased detection of genomic instability in soybean plants derived from somatic embryogenesis. Plant Breeding 121:269–271. doi:10.1046/j.1439-0523.2002.00708.x

    Article  CAS  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2002) Stress induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. Plant J 34:107–111

    Article  Google Scholar 

  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44

    Article  CAS  Google Scholar 

  • Karami O, Deljou A, Kordestani GK (2008) Secondary somatic embryogenesis of carnation (Dianthus caryophyllus L.). Plant Cell Tiss Organ Cult 92:273–280

    Article  Google Scholar 

  • Kintzios S, Sereti E, Bluchos P, Drossopoulos JB, Kitsaki CK, Liopa-Tsakalidis A (2002) Growth regulator pretreatment improves somatic embryogenesis from leaves of squash (Cucurbita pepo l.) and melon (Cucumis melo l.). Plant Cell Rep 21:1–8

    Article  CAS  Google Scholar 

  • Kudo N, Kimura Y (2001) Patterns of endopolyploidy during seedling development in cabbage (Brassica oleracea L). Ann Bot (Lond) 87:275–281

    Article  Google Scholar 

  • Lopez-Perez AJ, Carreno J, Martinez-Cutillas A, Dabauza M (2005) High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis 44:79–85

    CAS  Google Scholar 

  • Mandal AKA, Datta SK (2005) Direct somatic embryogenesis and plant regeneration from ray florets of chrysanthemum. Biol Plantarum 49:29–33

    Article  Google Scholar 

  • Martinelli L, Bragagna P, Poletti V, Scienza A (1993) Somatic embryogenesis from leaf and petiole derived callus of Vitis rupestris. Plant Cell Rep 12:207–210

    Article  CAS  PubMed  Google Scholar 

  • May RA, Sink KC (1995) Genotype and auxin influence direct somatic embryogenesis from protoplasts derived from embryogenic cell suspension of Asparagus officinalis. Plant Sci 108:71–84. doi:10.1016/0168-9452(95)04117-D

    Article  CAS  Google Scholar 

  • May RA, Trigiano RN (1991) Somatic embryogenesis and plant regeneration from leaves of Dendranthema grandiflora. J Am Soc Hort Sci 116:366–371

    Google Scholar 

  • Mckently AH (1991) Direct somatic embryogenesis from axes of mature peanut embryos. In Vitro Cell Dev Biol Plant 27:197–200

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naing AH, Chung JD, Park IS, Lim KB (2011) Efficient plant regeneration of the endangered medicinal orchid, Coelogyne cristata using protocorm-like bodies. Acta Physiol Plant 33:659–666

    Article  Google Scholar 

  • Naing AH, Kim CK, Yun BJ, Jin JY, Lim KB (2013) Primary and secondary somatic embryogenesis in Chrysanthemum cv. Euro. Plant Cell Tiss Organ Cult 112:361–368

    Article  Google Scholar 

  • Orbovie′ V, Calovie′ M, Viloria Z, Nielsen B, Gmitter FG Jr, Castle WS, Grosser JW (2008) Analysis of genetic variability in various tissue culture-derived lemon plant populations using RAPD and flow cytometry. Euphytica 161:329–335

    Article  Google Scholar 

  • Pareek A, Kothari SL (2003) Direct somatic embryogenesis and plant regeneration from leaf culture of ornamental species of Dianthus. Sci Hortic 98:449–459

    Article  CAS  Google Scholar 

  • Pavingerova D, Dostal J, Biskova R, Benetka V (1994) Somatic embryogenesis and agrobacterium mediated transformation of chrysanthemum. Plant Sci 97:95–101

    Article  CAS  Google Scholar 

  • Pinto DLP, de Barros BA, Viccini LF, de Campos JMS, da Silva ML, Otoni WC (2010) Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. plants as assessed by flow cytometry. Plant Cell Tiss Organ Cult 103:71–79

    Article  Google Scholar 

  • Rakoczy-Trojanowska M (2002) The effects of growth regulators on somaclonal variation in rye (Secale cereale L.) and selection of somaclonal variants with increased agronomic traits. Cell Mol Biol Lett 7:1111–1120

    CAS  PubMed  Google Scholar 

  • Robert DR (1991) Abscisic asid and mannitol promote early development; maturation and storage protein accumulation in somatic embryogenesis of interior spruce. Plant Physiol 83:247–252

    Article  Google Scholar 

  • Rout GR, Das P (1997) Recent trends in the biotechnology of Chrysanthemum: a critical review. Sci Hortic 69:239–257

    Article  Google Scholar 

  • Rout GR, Debata BK, Das P (1991) Somatic embryogenesis in callus cultures of Rosa hybrida L. cv. Landora. Plant Cell Tiss Organ Cult 27:65–69

    Article  CAS  Google Scholar 

  • Shi XP, Dai XG, Liu GF, Zhang JW, Ning GG, Bao MZ (2009) Cyclic secondary somatic embryogenesis and efficient plant regeneration in camphor tree (Cinnamomum camphora L.). In Vitro Cell Dev Biol Plant 46:117–125

    Article  Google Scholar 

  • Shinoyama H, Nomura Y, Tsuchiya T, Kazuma T (2004) A simple and efficient method for somatic embryogenesis and plant regeneration from leaves of chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Plant Biotechnol 21:25–30

    Article  CAS  Google Scholar 

  • Tanaka K, Kanno Y, Kudo S, Suzuki M (2000) Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Plant Cell Rep 19:946–953

    Article  CAS  Google Scholar 

  • Trolinder Norma L, Goodin JR (1988) Somatic embryogenesis in cotton (Gossypium) 2. Requirements for embryo development and plant regeneration. Plant Cell Tiss Organ Cult 12:43–53

    Article  Google Scholar 

  • Vasic D, Alibert G, Skoric D (2002) Protocols for efficient and repetitive secondary somatic embryogenesis in Helliantus Maximiliani (Schrader). Plant Cell Rep 2:121–125

    Google Scholar 

  • Xiao W, Huang XL, Huang X, Chen YP, Dai XM, Zhao JT (2007) Plant regeneration from protoplasts of Musa acuminata cv. Mas (AA) via somatic embryogenesis. Plant Cell Tiss Organ Cult 90:191–200

    Article  Google Scholar 

  • Xu P, Zhang Z, Xia X, Jia J (2012) Somatic embryogenesis and plant regeneration in chrysanthemum (Yuukou). Plant Cell Tiss Organ Cult 111:393–397

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Bio-industry Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Kil Kim.

Additional information

Communicated by B. Borkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naing, A.H., Min, J.S., Park, K.I. et al. Primary and secondary somatic embryogenesis in Chrysanthemum (Chrysanthemum morifolium) cv. ‘Baeksun’ and assessment of ploidy stability of somatic embryogenesis process by flow cytometry. Acta Physiol Plant 35, 2965–2974 (2013). https://doi.org/10.1007/s11738-013-1328-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1328-4

Keywords

Navigation