Skip to main content
Log in

Investigating the effect of increasing robot group sizes on the human psychophysiological state in the context of human–swarm interaction

Swarm Intelligence Aims and scope Submit manuscript

Abstract

We study the psychophysiological state of humans when exposed to robot groups of varying sizes. In our experiments, 24 participants are exposed sequentially to groups of robots made up of 1, 3 and 24 robots. We measure both objective physiological metrics (skin conductance level and heart rate), and subjective self-reported metrics (from a psychological questionnaire). These measures allow us to analyse the psychophysiological state (stress, anxiety, happiness) of our participants. Our results show that the number of robots to which a human is exposed has a significant impact on the psychophysiological state of the human and that higher numbers of robots provoke a stronger response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. We did not use the video recordings in our analysis. We recorded our experiments to have a visual history in case an experiment failed (e.g., robot crashes).

  2. A reason for the heart rate values (the difference between the heart rate values during the baseline and the heart rate values during the three sessions) to be negative is that, in situations that generates affective responses, the heart rate first decreases before increasing (Bradley and Lang 2000). In our case, the heart rate decrease was more prominent than the following heart rate increase.

References

  • Adams, J. (2009). Multiple robot/single human interaction: Effects on perceived workload. Behaviour & Information Technology, 28(2), 183–198.

    Article  Google Scholar 

  • Bainbridge, W. S. (Ed.). (2004). Berkshire encyclopedia of human–computer interaction. Great Barrington, MA: Berkshire Publishing.

    Google Scholar 

  • Bekele, E., & Sarkar, N. (2014). Psychophysiological feedback for adaptive human–robot interaction (HRI). In S. H. Fairclough & K. Gilleade (Eds.), Advances in physiological computing (pp. 141–167). Springer.

  • Bethel, C., Salomon, K., Murphy, R., & Burke, J. (2007). Survey of psychophysiology measurements applied to human–robot interaction. In Proceedings of the 16th IEEE international symposium on robot and human interactive communication (RO-MAN 2007) (pp. 732–737). New York: IEEE Press.

  • Blascovich, J., Vanman, E., Mendes, W., & Dickerson, S. (2011). Social psychophysiology for social and personality psychology. Beverley Hills, CA: Sage.

    Book  Google Scholar 

  • Bradley, M. M., & Lang, P. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.

    Article  Google Scholar 

  • Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. In R. D. R. Lane, L. Nadel, G. L. Ahern, J. Allen, & A. W. Kaszniak (Eds.), Cognitive neuroscience of emotion (pp. 25–49). Oxford: Oxford University Press.

    Google Scholar 

  • Byrne, E., & Parasuraman, R. (1996). Psychophysiology and adaptive automation. Biological Psychology, 42(3), 249–268.

    Article  Google Scholar 

  • De la Croix, J. P., & Egerstedt, M. (2012). Controllability characterizations of leader-based swarm interactions. In AAAI fall symposium series technical reports. AAAI.

  • Dehais, F., Sisbot, E., Alami, R., & Causse, M. (2011). Physiological and subjective evaluation of a human–robot object hand-over task. Applied Ergonomics, 42(6), 785–791.

    Article  Google Scholar 

  • Dix, A., Finlay, J., Abowd, G., & Beale, R. (2003). Human–computer interaction (3rd ed.). Upper Saddle River, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.

    Article  Google Scholar 

  • Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.

    Article  Google Scholar 

  • Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., & Birattari, M. (2015). Software infrastructure for E-puck (and TAM). Technical report TR/IRIDIA/2015-004. IRIDIA, Université Libre de Bruxelles, Brussels.

  • Goljar, N., Javh, M., Poje, J., Ocepek, J., Novak, D., Ziherl, J., et al. (2011). Psychophysiological responses to robot training in different recovery phases after stroke. In Proceedings of the IEEE international conference on rehabilitation robotics (ICORR’11) (pp. 1–6). New York: IEEE Press.

  • Gutiérrez, Á., Campo, A., Dorigo, M., Amor, D., Magdalena, L., & Monasterio-Huelin, F. (2008). An open localization and local communication embodied sensor. Sensors, 8(11), 7545–7563.

    Article  Google Scholar 

  • Humphrey, C., Henk, C., Sewell, G., Williams, B., & Adams, J. (2007). Assessing the scalability of a multiple robot interface. Proceedings of the 2nd ACM/IEEE international conference on human–robot interaction (HRI 2007) (pp. 239–246). Piscataway, NJ: IEEE Press.

  • Itoh, K., Miwa, H., Nukariya, Y., Zecca, M., Takanobu, H., Roccella, S., et al. (2006). Development of a bioinstrumentation system in the interaction between a human and a robot. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2620–2625). IEEE.

  • Kolling, A., Sycara, K., Nunnally, S., & Lewis, M. (2013). Human swarm interaction: An experimental study of two types of interaction with foraging swarms. Journal of Human–Robot Interaction, 2(2), 103–128.

    Google Scholar 

  • Kolling, A., Walker, P., Chakraborty, N., Sycara, K., & Lewis, M. (2016). Human interaction with robot swarms: A survey. IEEE Transaction on Human–Machine Systems, 46(1), 9–26.

    Google Scholar 

  • Kulic, D., Croft, E. (2005). Anxiety detection during human–robot interaction. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2005) (pp. 616–621). Los Alamitos: IEEE Computer Society Press.

  • Kulic, D., & Croft, E. (2007). Affective state estimation for human–robot interaction. IEEE Transactions on Robotics, 23(5), 991–1000.

    Article  Google Scholar 

  • Lang, P. J. (1980). Behavioral treatment and bio-behavioral assessment: Computer applications. In J. B. Sidowski, J. H. Johnson, & T. H. Williams (Eds.), Technology in mental health care delivery systems (pp. 119–137). New York: Ablex.

    Google Scholar 

  • Mehrabian, A. (1996). Pleasure–arousal–dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology, 14(4), 261–292.

    Article  MathSciNet  Google Scholar 

  • Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The E-Puck, a robot designed for education in engineering. In Proceedings of the 9th conference on autonomous robot systems and competitions (pp. 59–65). Castelo Branco: Instituto Politècnico de Castelo Branco.

  • Nagavalli, S., Chien, S., Lewis, M., Chakraborty, N., & Sycara, K. (2015). Bounds of neglect benevolence in input timing for human interaction with robotic swarms. In Proceedings of ACM/IEEE international conference on human–robot interaction (pp. 197–204). New York, NY: ACM.

  • Nagi, J., Giusti, A., Gambardella, L., & Di Caro, G. A. (2014). Human–swarm interaction using spatial gestures. In Proceedings of the 27th IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3834–3841). Washington: IEEE Computer Society.

  • Nagi, J., Ngo, H., Gambardella, L., & Di Caro, G. A. (2015). Wisdom of the swarm for cooperative-decision making in human–swarm interaction. In Proceedings of the IEEE international conference on robotics and automation (ICRA).

  • Novak, D., Ziherl, J., Olenšek, A., Milavec, M., Podobnik, J., Mihelj, M., et al. (2010). Psychophysiological responses to robotic rehabilitation tasks in stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(4), 351–361.

    Article  Google Scholar 

  • Nunnally, S., Walker, P., Lewis, M., Kolling, A., Chakraborty, N., & Sycara, K. (2012). Connectivity differences between human operators of swarms and bandwidth limitations. In Proceedings of the third international conference on swarm, evolutionary, and memetic computing (pp. 713–720). Berlin: Springer.

  • Pendleton, B., & Goodrich, M. (2013). Scalable human interaction with robotic swarms. In Proceedings of the AIAA Infotech@Aerospace conference (pp. 633–645). Reston, VA: American Institute of Aeronautics and Astronautics.

  • Podevijn, G., O’Grady, R., Nashed, Y., & Dorigo, M. (2013). Gesturing at subswarms: Towards direct human control of robot swarms. In A, Natraj, S. Cameron, C. Melhuish, & M. Witkowski (Eds.), Towards autonomous robotic systems—14th annual conference, TAROS 2013, Lecture notes in computer science (Vol. 8069, pp. 390–403). Berlin: Springer.

  • Prinzel, L., Freeman, F., Scerbo, M., Mikulka, P., & Pope, A. (2000). A closed-loop system for examining psychophysiological measures for adaptive task allocation. The International Journal of Aviation Psychology, 10(4), 393–410.

    Article  Google Scholar 

  • Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., & Pope, A. T. (2003). Effects of a psychophysiological system for adaptive automation on performance, workload, and the event-related potential P300 component. Human Factors: The Journal of the Human Factors and Ergonomics Society, 45(4), 601–614.

    Article  Google Scholar 

  • R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org.

  • Rani, P., & Sarkar, N. (2005). Making robots emotion-sensitive—Preliminary experiments and results. In IEEE international workshop on robot and human interactive communication (pp. 1–6). Piscataway: IEEE.

  • Rani, P., Sarkar, N., Smith, C. A., & Kirby, L. (2004). Anxiety detecting robotic system-towards implicit human–robot collaboration. Robotica, 22(01), 85–95.

    Article  Google Scholar 

  • Salvendy, G. (2012). Handbook of human factors and ergonomics. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Setter, T., Fouraker, A., Kawashima, H., & Egerstedt, M. (2015). Haptic interactions with multi-robot swarms using manipulability. Journal of Human–Robot Interaction, 4(1), 60–74.

    Google Scholar 

  • Swangnetr, M., & Kaber, D. (2013). Emotional state classification in patient–robot interaction using wavelet analysis and statistics-based feature selection. IEEE Transactions on Human–Machine Systems, 43(1), 63–75.

    Article  Google Scholar 

  • Swangnetr, M., Zhu, B., Taylor, K., & Kaber, D. (2010). Assessing the effects of humanoid robot features on patient emotion during a medicine delivery task. In Proceedings of the Human Factors and Ergonomics Society annual meeting (pp. 349–353). London: Sage.

  • Tiberio, L., Cesta, A., Cortellessa, G., Padua, L., & Pellegrino, A. (2012). Assessing affective response of older users to a telepresence robot using a combination of psychophysiological measures. In Proceedings of the 21st IEEE symposium on robot and human interactive communication (RO-MAN) (pp 833–838). New York: IEEE Press.

  • Ting, C., Mahfouf, M., Nassef, A., Linkens, D., Panoutsos, G., Nickel, P., et al. (2010). Real-time adaptive automation system based on identification of operator functional state in simulated process control operations. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40(2), 251–262.

    Article  Google Scholar 

  • Tullis, T., & Albert, W. (2008). Measuring the user experience: Collecting, analyzing, and presenting usability metrics. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Velagapudi, P., Scerri, P., Sycara, K., Wang, H., Lewis, M., & Wang, J. (2008). Scaling effects in multi-robot control. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2008) (pp. 2121–2126). Los Alamitos: IEEE Computer Society Press.

  • Zhang, T., Kaber, D., Zhu, B., Swangnetr, M., Mosaly, P., & Hodge, L. (2010). Service robot feature design effects on user perceptions and emotional responses. Intelligent service robotics, 3(2), 73–88.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mauro Birattari for his help in the construction of the experimental environment. This work was partially supported by the European Research Council through the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” Contract 246939) awarded to Marco Dorigo. Rehan O’Grady and Marco Dorigo acknowledge support from the Belgian F.R.S.-FNRS. The authors also thank the 24 participants who participated in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Podevijn.

Additional information

Guest editor: Roderich Groß.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podevijn, G., O’Grady, R., Mathews, N. et al. Investigating the effect of increasing robot group sizes on the human psychophysiological state in the context of human–swarm interaction. Swarm Intell 10, 193–210 (2016). https://doi.org/10.1007/s11721-016-0124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-016-0124-3

Keywords

Navigation