Skip to main content
Log in

Cache consensus: rapid object sorting by a robotic swarm

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

We present a new method which allows a swarm of robots to sort arbitrarily arranged objects into homogeneous clusters. In the ideal case, a distributed robotic sorting method should establish a single homogeneous cluster for each object type. This can be achieved with existing methods, but the rate of convergence is considered too slow for real-world application. Previous research on distributed robotic sorting is typified by randomised movement with a pick-up/deposit behaviour that is a probabilistic function of local object density. We investigate whether the ability of each robot to localise and return to remembered places can improve distributed sorting performance. In our method, each robot maintains a cache point for each object type. Upon collecting an object, it returns to add this object to the cluster surrounding the cache point. Similar to previous biologically inspired work on distributed sorting, no explicit communication between robots is implemented. However, the robots can still come to a consensus on the best cache for each object type by observing clusters and comparing their sizes with remembered cache sizes. We refer to this method as cache consensus. Our results indicate that incorporating this localisation capability enables a significant improvement in the rate of convergence. We present experimental results using a realistic simulation of our targeted robotic platform. A subset of these experiments is also validated on physical robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The term ‘pose’ implies the specification of both position and orientation with respect to some reference frame.

  2. http://www.surveyor.com

  3. http://jbox2d.org.

  4. See http://matplotlib.org/. The griddata function is used for interpolation.

References

  • Beckers, R., Holland, O., & Deneubourg, J. L. (1994). From local actions to global tasks: Stigmergy and collective robotics. In R. Brooks & P. Maes (Eds.), Artificial life IV (pp. 181–189). Cambridge, MA: MIT Press.

    Google Scholar 

  • Beekman, M., Sword, G. A., & Simpson, S. J. (2008). Biological foundations of swarm intelligence. In C. Blum & D. Merkle (Eds.), Swarm intelligence, natural computing series (pp. 3–41). Berlin: Springer.

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York, NY: Oxford University Press.

    MATH  Google Scholar 

  • Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.

    Article  Google Scholar 

  • Cartwright, B., & Collett, T. (1983). Landmark learning in bees. Journal of Comparative Physiology A, 151, 521–543.

    Article  Google Scholar 

  • Collett, T., & Collett, M. (2002). Memory use in insect visual navigation. Nature Reviews Neuroscience, 3, 542–552.

    Article  Google Scholar 

  • Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. (1990). The dynamics of collective sorting robot-like ants and ant-like robots. In First International Conference on the Simulation of Adaptive Behaviour (pp. 356–363). Cambridge, MA: MIT Press.

  • Dudek, G., & Jenkin, M. (2010). Computational principles of mobile robotics (2nd ed.). New York, NY: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Gonzalez, R., & Woods, R. (2002). Digital image processing (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Gordon, D. (1996). The organization of work in social insect colonies. Nature, 380, 121–124.

    Article  Google Scholar 

  • Gutiérrez, A., Campo, A., Monasterio-Huelin, F., Magdalena, L., & Dorigo, M. (2010). Collective decision-making based on social odometry. Neural Computing and Applications, 19(6), 807–823. doi:10.1007/s00521-010-0380-x.

    Article  Google Scholar 

  • House, B., Capson, D., & Schuurman, D. (2011). Towards real-time sorting of recyclable goods using support vector machines. In Sustainable Systems and Technology (ISSST), 2011 IEEE International Symposium on IEEE Xplore (pp. 1–6). doi:10.1109/ISSST.2011.5936845.

  • Katz, D., Orthey, A., & Brock, O. (2010). Interactive perception of articulated objects. In 12th International Symposium of Experimental Robotics (pp. 1–15). Berlin: Springer.

  • Kazadi, S., Abdul-Khaliq, A., & Goodman, R. (2002). On the convergence of puck clustering systems. Robotics and Autonomous Systems, 38(2), 93–117.

    Article  MATH  Google Scholar 

  • Maris, M., & Boeckhorst, R. (1996). Exploiting physical constraints: heap formation through behavioral error in a group of robots. In IEEE/RSJ International Conference on Robots and Systems (IROS), IEEE Xplore, Vol. 3 (pp 1655–1660).

  • Martinoli, A., Ijspeert, A., & Gambardella, L. (1999). A probabilistic model for understanding and comparing collective aggregation mechanisms. In D. Floreano, J.-D. Nicoud, & F. Mondada (Eds.), Advances in artificial life, lecture notes in computer science (Vol. 1674, pp. 575–584). Berlin: Springer.

    Google Scholar 

  • Melhuish, C., Holland, O., & Hoddell, S. (1998). Collective sorting and segregation in robots with minimal sensing. In 5th International Conference on the Simulation of Adaptive Behaviour. Cambridge, MA: MIT Press.

  • Melhuish, C., Sendova-Franks, A. B., Scholes, S., Horsfield, I., & Welsby, F. (2006). Ant-inspired sorting by robots: The importance of initial clustering. Journal of the Royal Society: Interface, 3(7), 235–242.

    Google Scholar 

  • Melhuish, C., Wilson, M., & Sendova-Franks, A. B. (2001). Patch sorting: Multi-object clustering using minimalist robots. In Advances in Artificial Life—Proceedings of the 6th European Conference on Artificial Life (ECAL). Springer.

  • Möller, R., Krzykawski, M., & Gerstmayr, L. (2010). Three 2D-warping schemes for visual robot navigation. Autonomous Robots, 29(3), 253–291.

    Article  Google Scholar 

  • Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE Xplore (pp. 3400–3407).

  • Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: An open-source robot operating system. In ICRA Workshop on Open Source Software.

  • Scaramuzza, D., Martinelli, A., & Siegwart, R. (2006). A toolbox for easily calibrating omnidirectional cameras. In IEEE/RSJ International Conference on Robots and Systems (IROS), IEEE Xplore (pp. 5695–5701).

  • Seeley, T. D. (2010). Honeybee democracy. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Sendova-Franks, A. B., Scholes, S. R., Franks, N. R., & Melhuish, C. (2004). Brood sorting by ants: Two phases and differential diffusion. Animal Behavior, 68, 1095–1106.

    Article  Google Scholar 

  • Sharkey, A. J. (2007). Swarm robotics and minimalism. Connection Science, 19(3), 245–260.

    Article  Google Scholar 

  • Siegwart, R., Nourbakhsh, I., & Scaramuzza, D. (2011). Introduction to autonomous mobile robots (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Trucco, E., & Verri, A. (1998). Introductory techniques for 3D computer vision. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Ulrich, I., & Borenstein, J. (1998). VFH+: Reliable obstacle avoidance for fast mobile robots. In IEEE International Conference on Robotics and Automation (ICRA), IEEE Xplore, Vol. 2 (pp. 1572–1577).

  • Vardy, A. (2012). Accelerated patch sorting by a robotic swarm. In Canadian Conference on Computer and Robot Vision, IEEE Xplore (pp. 314–321).

  • Vardy, A., & Möller, R. (2005). Biologically plausible visual homing methods based on optical flow techniques. Connection Science, 17(1/2), 47–90.

    Article  Google Scholar 

  • Verret, S., Zhang, H., & Meng, M. Q. H. (2004). Collective sorting with local communication. In IEEE/RSJ International Conference on Robots and Systems (IROS), IEEE Xplore, Vol. 3 (pp. 2687–2692).

  • Wang, T., & Zhang, H. (2003). Multi-robot collective sorting with local sensing. In IEEE Intelligent Automation Conference (IAC).

Download references

Acknowledgments

Thanks to Paul Gillard for helpful discussions and support in diagnosing myriad hardware problems. WB gratefully acknowledges funding from NSERC under Discovery Grant RGPIN 283304-2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Vardy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 630 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardy, A., Vorobyev, G. & Banzhaf, W. Cache consensus: rapid object sorting by a robotic swarm. Swarm Intell 8, 61–87 (2014). https://doi.org/10.1007/s11721-014-0091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-014-0091-5

Keywords

Navigation