Skip to main content
Log in

Optimal Su-Do-Ku based interconnection scheme for increased power output from PV array under partial shading conditions

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Partial shading is a common phenomenon in PV arrays. They drastically reduce the power output because of mismatch losses, which are reliant on the shape of the shade as well as the locations of shaded panels in the array. The power output can be improved by distributing the shade over various rows to maximize the current entering the node. A Su-Do-Ku configuration can be used to rearrange the physical locations of the PV modules in a total cross tied PV array with the electrical connections left unchanged. However, this arrangement increases the length of the wire required to interconnect the panels thus increasing the line losses. In this paper, an improved Su-Do-Ku arrangement that reduces the length of the wire required for the connection is proposed. The system is designed and simulated in a Matlab/Simulink environment for various shading patterns and the efficacies of various arrangements are compared. The results prove that the power output is higher in the proposed improved Su-Do-Ku reconfiguration technique compared to the earlier proposed Su-Do-Ku technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nguyen D, Lehman B. An adaptive solar photovoltaic array using model-based reconfiguration algorithm. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2644–2654

    Article  Google Scholar 

  2. Vieira J A B, Mota A M. Maximum power point tracket applied in batteries charging with PV panels. In: Proceedings of IEEE International Symposium on Industrial Electronics. Cambridge, UK, 2008, 202–207.

    Google Scholar 

  3. Koutroulis E, Kalaitzakis K, Voulgaris N C. Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Transactions on Power Electronics, 2001, 16(1): 46–54

    Article  Google Scholar 

  4. Yafaoui A, Wu B, Cheung R. Implementation of maximum power point tracking algorithm for residential photovoltaic systems. In: Proceedings of the 2nd Canadian Solar Buildings Conference. Calgary, Canada, 2007, 1–7

    Google Scholar 

  5. Liu Y H, Huang J W. A fast and low cost analog maximum power point tracking method for low power photovoltaic systems. Solar Energy, 2011, 85(11): 2771–2780

    Article  Google Scholar 

  6. Chamberlin C E, Lehman P, Zoellick J, Pauletto G. Effects of mismatch losses in photovoltaic arrays. Solar Energy, 1995, 54(3): 165–171

    Article  Google Scholar 

  7. Picault D, Raison B, Bacha S, de la Casa J, Aguilera J. Forecasting photovoltaic array power production subject to mismatch losses. Solar Energy, 2010, 84(7): 1301–1309

    Article  Google Scholar 

  8. Patel H, Agarwal V. Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Transactions on Industrial Electronics, 2008, 55(4): 1689–1698

    Article  Google Scholar 

  9. Patel H, Agarwal V. Matlab based modeling to study the effects of partial shading on PV array characteristics. IEEE Transactions on Energy Conversion, 2008, 23(1): 302–310

    Article  Google Scholar 

  10. Esram T, Kimball JW, Krein P T, Chapman P L, Midya P. Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Transactions on Power Electronics, 2006, 21(5): 1282–1291

    Article  Google Scholar 

  11. Ji Y H, Jung D Y, Kim J G, Kim J H, Lee T W, Won C Y. A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Transactions on Power Electronics, 2011, 26(4): 1001–1009

    Article  Google Scholar 

  12. Femia N, Lisi G, Petrone G, Spagnuolo G, Vitelli M. Distributed maximum power point tracking of photovoltaic arrays: novel approach and system analysis. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2610–2621

    Article  Google Scholar 

  13. Petrone G, Spagnuolo G, Vitelli M. Analytical model of photovoltaic fields by means of lambert w-function. IEEE Transactions on Industrial Electronics, 2007, 91(7): 1652–1657

    Google Scholar 

  14. Woyte A, Nijs J, Belmans R. Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Solar Energy, 2003, 74(3): 217–233

    Article  Google Scholar 

  15. Gautam N K, Kaushika N D. An efficient algorithm to simulate the electrical performance of solar photovoltaic arrays. Energy, 2002, 27(4): 347–361

    Article  Google Scholar 

  16. Wang Y J, Hsu P C. An investigation on partial shading of PV modules with different connection configurations of PV cells. Energy, 2011, 36(5): 3069–3078

    Article  MathSciNet  Google Scholar 

  17. Gao L, Dougal R A, Liu S, Iotova A P. Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1548–1556

    Article  Google Scholar 

  18. Salameh Z M, Dagher F. The effect of electrical array reconfiguration on the performance of a PV-powered volumetric water pump. IEEE Transactions on Energy Conversion, 1990, 5(4): 653–658

    Article  Google Scholar 

  19. Salameh Z M, Liang C. Optimum switching points for array reconfiguration controller. In: Proceedings of 1999 IEEE Photovoltaic Specialists Conference. Kissimmee, USA, 1990, 971–976

    Google Scholar 

  20. Velasco-Quesada G, Guinjoan-Gispert F, Pique-Lopez R, Roman-Lumbreras M, Conesa-Roca A. Electrical PV array reconfiguration strategy for energy extraction improvement in grid connected systems. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4319–4331

    Article  Google Scholar 

  21. Tria L A R, Escoto M T, Odulio C M F. Photovoltaic array reconfiguration for maximum power transfer. In: Proceedings of 2009 IEEE region 10 conference. Singapore, 2009, 843–847

    Google Scholar 

  22. Cheng Z, Pang Z, Liu Y, Xue P. An adaptive solar photovoltaic array reconfiguration method based on fuzzy control. In: Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, China, 2010, 176–181

    Google Scholar 

  23. Shams El-Dein M, Kazerani M, Salama M M A. Optimal photovoltaic array reconfiguration to reduce partial shading losses. IEEE Transactions on Sustainable Energy, 2013, 4(1): 145–153

    Article  Google Scholar 

  24. Shams El-Dein M, Kazerani M, Salama M M A. An optimal total cross tied interconnection for reducing mismatch losses in photovoltaic arrays. IEEE Transactions on Sustainable Energy, 2013, 4(1): 99–107

    Article  Google Scholar 

  25. Rani B I, Ilango G S, Nagamani C. Enhanced power generation from pv array under partial shading conditions by shade dispersion using Su Do Ku configuration. IEEE Transactions on Sustainable Energy, 2013, 4(3): 594–601

    Article  Google Scholar 

  26. Kadri R, Gaubert J P, Champenois G. An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control. IEEE Transactions on Industrial Electronics, 2011, 58(1): 66–75

    Article  Google Scholar 

  27. Babu P, Pelckmans K, Stoica P, Li J. Linear system, sparse solutions and Su-Do-Ku. IEEE Signal Processing Letters, 2010, 17(1): 40–42

    Article  Google Scholar 

  28. Villa L F L, Picault D, Raison B, Bacha S, Labonne A. Maximizing the power output of partially shaded photovoltaic plants through optimization of the interconnections among its modules. IEEE Journal of Photovoltaics, 2012, 2(2): 154–163

    Article  Google Scholar 

  29. Wiles J. Photovoltaic power systems and the national electrical code: suggested practices. 2001–03, http://www.nmsu.edu/~tdi/pdfresources/NEC.pdf

    Book  Google Scholar 

  30. Transwiki. Wire gauge ampacity. 2013–05, http://wiki.xtronics.com/index.php/Wire-Gauge-Ampacity

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Saravana Ilango.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasa Rao, P., Dinesh, P., Saravana Ilango, G. et al. Optimal Su-Do-Ku based interconnection scheme for increased power output from PV array under partial shading conditions. Front. Energy 9, 199–210 (2015). https://doi.org/10.1007/s11708-015-0350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-015-0350-1

Keywords

Navigation