Skip to main content
Log in

Thermal radiative properties of metamaterials and other nanostructured materials: A review

  • Review Article
  • Published:
Frontiers of Energy and Power Engineering in China Aims and scope Submit manuscript

Abstract

The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials-manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma A K, Zaidi S H, Logofatu P C, et al. Optical and electrical properties of nanostructured metal-silicon-metal photodetectors. IEEE Journal of Quantum Electronics, 2002, 38(12): 1651–1660

    Article  Google Scholar 

  2. Boueke A, Kuhn R, Fath P, et al. Latest results on semitransparent POWER silicon solar cells. Solar Energy Materials and Solar Cells, 2001, 65(1–4): 549–553

    Article  Google Scholar 

  3. Zhang Q-C. Recent progress in high-temperature solar selective coatings. Solar Energy Materials and Solar Cells, 2000, 62(1–2): 63–74

    Article  Google Scholar 

  4. Coutts T J. A review of progress in thermophotovoltaic generation of electricity. Renewable and Sustainable Energy Reviews, 1999, 3(2): 77–184

    Article  Google Scholar 

  5. Heinzel A, Boerner V, Gombert A, et al. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Journal of Modern Optics, 2000, 47(13): 2399–2419

    Google Scholar 

  6. Sai H, Yugami H, Akiyama Y, et al. Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region. Journal of the Optical Society of America A, 2001, 18(7): 1471–1476

    Article  Google Scholar 

  7. Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters, 2003, 83(2): 380–382

    Article  Google Scholar 

  8. Timans P J, Sharangpani R, Thakur R P S. Rapid thermal processing. Handbook of Semiconductor Manufacturing Technology. Marcel Dekker, New York, 2000, 201–286

    Google Scholar 

  9. Zhang Z M. Surface temperature measurement using optical techniques. Annual Review of Heat Transfer (C.L. Tien, ed). Begell House, New York, 2000, 351–411

    Google Scholar 

  10. Naqvi S S H, Krukar R H, McNeil J R, et al. Etch depth estimation of large-period silicon gratings with multivariate calibration of rigorously simulated diffraction profiles. Journal of the Optical Society of America A, 1994, 11(9): 2485–2493

    Article  Google Scholar 

  11. Coulombe S A, Minhas B K, Raymond C J, et al. Scatterometry measurement of sub-0.1 μm linewidth Gratings. Journal of Vacuum Science and Technology B, 1998, 16(1): 80–87

    Article  Google Scholar 

  12. Greffet J-J, Carminati R, Joulain K, et al. Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61–64

    Article  Google Scholar 

  13. Marquier F, Joulain K, Mulet J-P, et al. Coherent spontaneous emission of light by thermal sources. Physical Review B, 2004, 69(15): 155412

    Article  Google Scholar 

  14. Lezec H J, Degiron A, Devaux E, et al. Beam light from a subwavelength aperture. Science, 2002, 297(5582): 820–822

    Article  Google Scholar 

  15. Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79

    Article  Google Scholar 

  16. Engheta N, Ziolkowski RW, eds. Electromagnetic Metamaterials: Physics and Engineering Explorations. Wiley-IEEE Press, New York, 2006

    Google Scholar 

  17. Soukoulis C M, Linden S, Wegener M. Negative refractive index atoptical wavelengths. Science, 2007, 315(5808): 47–49

    Article  Google Scholar 

  18. Shalaev V M. Optical negative-index metamaterials. Nature Photonics, 2007, 1(1): 41–48

    Article  MathSciNet  Google Scholar 

  19. Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455(7211): 376–379

    Article  Google Scholar 

  20. Zhang Z M, Fu C J, Zhu Q Z. Optical and radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer, 2003, 37: 179–296

    Google Scholar 

  21. Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 1968, 10(4): 509–514

    Article  Google Scholar 

  22. Pendry J B. Negative index makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969

    Article  Google Scholar 

  23. Ramakrishna S A. Physics of negative refractive index materials. Reports on Progress in Physics, 2005, 68(2): 449–521

    Article  Google Scholar 

  24. Fu C J. Radiative properties of emerging materials and radiation heat transfer at the nanoscale. Ph.D.dissertation, Georgia Institute of Technology, Atlanta, Georgia, USA, 2004

    Google Scholar 

  25. Zhang Z M. Nano/Microscale Heat Transfer. McGraw-Hill, New York, 2007

    Google Scholar 

  26. Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776

    Article  Google Scholar 

  27. Pendry J B, Holden A J, Rubbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084

    Article  Google Scholar 

  28. Reddick R C, Warmack R J, Ferrell T J. New form of scanning optical microcopy. Physical Review B, 1989, 39(1): 767–770

    Article  Google Scholar 

  29. Shen Y, Jakubczyk D, Xu F, et al. Two-photon fluorescence imaging and spectroscopy of nanostructure organic materials using a photon scanning tunneling microscope. Applied Physics Letters, 2000, 76(1): 1–3

    Article  Google Scholar 

  30. Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels. International Journal of Heat and Mass Transfer, 2006, 49(9,10): 1703–1718

    Article  Google Scholar 

  31. Whale M D, Cravalho E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Transactions on Energy Conversion, 2002, 17(1): 130–142

    Article  Google Scholar 

  32. Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82(20): 3544–3546

    Article  Google Scholar 

  33. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin: Springer-Verlag, 1988

    Google Scholar 

  34. Rupin R. Surface polaritons of a left-handed medium. Physics Letters A, 2000, 277(1): 61–64

    Article  Google Scholar 

  35. Kawata S, ed. Near-field Optics and Surface Plasmon Polaritons. Berlin: Springer, 2001

    Google Scholar 

  36. Tominaga J, Tsai D P, eds. Optical Nanotechnologies-The Manipulation of Surface and Local Plasmons. Berlin: Springer, 2003

    Google Scholar 

  37. Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. Sensors and Actuators B, 1999, 54(1,2): 3–15

    Article  Google Scholar 

  38. Hillenbrand R, Taubner T, Kellmann F. Phonon-enhanced light-matter interaction at the nanometer scale. Nature, 2002, 418(6894): 159–162; Hillenbrand R. Towards phonon photonics: Scattering-type near-field optical microscopy reveals phonon-enhanced nearfield interaction. Ultramicroscopy, 2004, 100(3,4): 421–427

    Article  Google Scholar 

  39. Maystre D, ed. Selected Papers on Diffraction Gratings. SPIE Milestone Series 83, The International Society for Optical Engineering, Bellingham, WA, 1993

    Google Scholar 

  40. Petit R, ed. Electromagnetic Theory of Gratings. Berlin: Springer, 1980

    Google Scholar 

  41. Chen Y-B, Zhang Z M, Timans P J. Radiative properties of patterned wafers with nanoscale linewidth. Journal of Heat Transfer, 2007, 129(1): 79–90

    Article  Google Scholar 

  42. Lee B J, Chen Y-B, Zhang Z M. Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared. Journal of Computational and Theoretical Nanoscience, 2008, 5(2): 201–213

    Google Scholar 

  43. Fu K, Chen Y-B, Hsu P-F, et al. Device scaling effect on the spectral-directional absorptance of wafer′s front side. International Journal of Heat and Mass Transfer, 2008, 51(19,20): 4911–4925

    Article  MATH  Google Scholar 

  44. Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals. Princeton, NJ: Princeton University Press, 1995

    MATH  Google Scholar 

  45. Sakoda K. Optical Properties of Photonic Crystals. Berlin: Springer-Verlag, 2001

    Google Scholar 

  46. Kitttel C. Introduction to Solid State Physics, 8th ed. New York: Wiley, 2004

    Google Scholar 

  47. Macleod H A. Thin Film Optical Filters, 3rd ed. Bristol, UK: Institute of Physics, 2001

    Google Scholar 

  48. Yeh P. Optical Waves in Layered Media. Wiley, New York, 1988; Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America, 1977, 67(4): 423–438

    Google Scholar 

  49. Zhang Z M, Fu C J. Unusual photon tunneling in the presence of a layer with a negative refractive index. Applied Physics Letters, 2002, 80(6): 1097–1099

    Article  MathSciNet  Google Scholar 

  50. Fu C J, Zhang, Z M. Transmission enhancement using a negative-refraction layer. Microscale Thermophysical Engineering, 2003, 7(3): 221–234

    Article  Google Scholar 

  51. Fu C J, Zhang Z M, Tanner D B. Energy transmission by photon tunneling in multilayer structures including negative index materials. Journal of Heat Transfer, 2005, 127(9): 1046–1052

    Article  Google Scholar 

  52. Park K, Lee B J, Fu C J, et al. Study of the surface and bulk polaritons with a negative index metamaterials. Journal of the Optical Society of America B, 2005, 22(5): 1016–1023

    Article  Google Scholar 

  53. Liu Z, Hu L, Lin Z. Enhancing photon tunneling by a slab of uniaxially anisotropic left-handed material. Physics Letters A, 2003, 308(4): 294–301

    Article  Google Scholar 

  54. Gao L, Tang C J. Near-field imaging by a multi-layer structure consisting of alternate right-handed and left-handed materials. Physics Letters A, 2004, 322(5,6): 390–395

    Article  MATH  Google Scholar 

  55. Kim K-Y. Photon tunneling in composite layers of negative- and positive-index media. Physical Review E, 2004, 70(4): 047603

    Article  Google Scholar 

  56. Chen Y-Y, Huang Z-M, Wang Q, et al. Photon tunneling in one-dimensional metamaterial photonic crystals. Journal of Optics A: Pure and Applied Optics, 2005, 7(9): 519–524

    Article  Google Scholar 

  57. Fang Y-T, Zhou J, Pun E Y B. High-Q filters based on onedimensional photonic crystals using epsilon-negative materials. Applied Physics B, 2007, 86(4): 587–591

    Article  Google Scholar 

  58. Siegel R, Howell J R. Thermal Radiation Heat Transfer, 4th ed. New York: Taylor and Francis, 2002

    Google Scholar 

  59. Hesketh P J, Zemel J N, Gebhart B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature, 1986, 324: 549–551

    Article  Google Scholar 

  60. Hesketh P J, Gebhart B, Zemel J N. Measurements of the spectral and directional emission from microgrooved silicon surfaces. Journal of Heat Transfer, 1988, 110(3): 680–686

    Article  Google Scholar 

  61. Dimenna R A, Buckius R O. Electromagnetic theory predictions of the directional scattering from triangular surfaces. Journal of Heat Transfer, 1994, 116(3): 639–645

    Article  Google Scholar 

  62. Tang K, Buckius R O. Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces. Microscale Thermophysical Engineering, 1998, 2(4): 245–260

    Article  Google Scholar 

  63. Sai H, Yugami H, Kanamori Y, et al. Spectrally selective thermal radiators and absorbers with periodic microstructured surfaces for high-temperature applications. Microscale Thermophysical Engineering, 2003, 7(2): 101–115

    Article  Google Scholar 

  64. Seager C H, Sinclair M B, Fleming J G. Accurate measurements of thermal radiation from a tungsten photonic lattice. Applied Physics Letters, 2005, 86(24): 244105

    Article  Google Scholar 

  65. Chen Y-B, Zhu Q Z, Wright T L, et al. Bidirectional reflection measurements of periodically microstructured silicon surfaces. International Journal of Thermophysics, 2004, 25(4): 1235–1252

    Article  Google Scholar 

  66. Kreiter M, Oster J, Sambles R, et al. Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons. Optics Communications, 1999, 168(1–4): 117–122

    Article  Google Scholar 

  67. Fu C J, Zhang Z M, Tanner D B. Planar heterogeneous structures for coherent emission of radiation. Optics Letters, 2005, 30(14): 1873–1875

    Article  Google Scholar 

  68. Fu C J, Zhang Z M. Further investigation of coherent thermal emission from single negative materials. Nanoscale and Microscale Thermophysical Engineering, 2008, 12(1): 83–97

    Article  Google Scholar 

  69. Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187

    Article  Google Scholar 

  70. Yen T J, Padilla W J, Fang N, et al. Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494–1496

    Article  Google Scholar 

  71. Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351–1353

    Article  Google Scholar 

  72. Enkrich C, Wegener M, Linden S, et al. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901

    Article  Google Scholar 

  73. Lagarkov A N, Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions. Physical Review B, 1996, 53(10): 6318–6336

    Article  Google Scholar 

  74. Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes in metal nanowires and left-handed materials. Journal of Nonlinear Optical Physics and Materials, 2002, 11(1): 65–74

    Article  Google Scholar 

  75. Dolling D, Enkrich C, Wegener M, et al. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198–3200

    Article  Google Scholar 

  76. Shalaev V M, Cai W S, Chettiar U K, et al. Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356–3358

    Article  Google Scholar 

  77. Zhou J F, Zhang L, Tuttle G, et al. Negative index materials using simple short wire pairs. Physical Review B, 2006, 73(4): 041101(R)

    Google Scholar 

  78. Yuan H K, Chettiar U K, Cai W S, et al. A negative permeability material at red light. Optics Express, 2007, 15(3): 1076–1083

    Article  Google Scholar 

  79. Zhang S, Fan W J, Panoiu N C, et al. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005, 95(13): 137404

    Article  Google Scholar 

  80. Dolling G, Enkrich C, Wegener M, et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science, 2006, 312(5775): 892–894

    Article  Google Scholar 

  81. Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 2008, 16(15): 11328–11336

    Article  Google Scholar 

  82. Li T, Wang S M, Liu H, et al. Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials. Journal of Applied Physics, 2008, 103(2): 023104

    Article  MathSciNet  Google Scholar 

  83. Basu S, Chen Y-B, Zhang Z M. Microscale radaition in thermophotovoltaic devices- a review. International Journal of Energy Research, 2007, 31(6,7): 689–716

    Article  Google Scholar 

  84. Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering, 2005, 15(9): S243–S249

    Article  Google Scholar 

  85. Chen Y-B, Zhang Z M. Design of tungsten complex gratings for thermophotovoltaic radiatiors. Optics Communications, 2007, 269(2): 411–417

    Article  Google Scholar 

  86. Chen Y-B, Zhang Z M. Heavily doped silicon complex gratings as wavelength selective absorbing surfaces. Journal of Physics D: Applied Physics, 2008, 41(9): 095406

    Article  Google Scholar 

  87. Fu C J, Tan W C. Semiconductor Thin Films Combined with Metallic Grating for Selective Improvement of Thermal Radiative Absorption/Emission. Journal of Heat Transfer (In press)

  88. Erofeev A F, Kolpakov A V, Makhviladze T M, et al. Comprehensive RTP modeling and simulation. Proceedings of the 3rd International Rapid Thermal Processing Conference, 1995, 181–197

  89. Hebb J P, Jensen K F. The effect of patterns on thermal stress during rapid thermal processing of silicon wafers. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(1): 99–107

    Article  Google Scholar 

  90. Tada H, Abramson A R, Mann S E, et al. Evaluating the effects of thin film patterns on the temperature distribution of silicon wafers during radiant processing. Optical Engineering, 2000, 39(8): 2296–2304

    Article  Google Scholar 

  91. Liu J, Zhang S J, Chen Y S. Rigorous electromagnetic modeling of radiative interactions with microstructures using the finite volume time-domain method. International Journal of Thermophysics, 2004, 25(4): 1281–1297

    Article  MathSciNet  Google Scholar 

  92. Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1988, 391(6668): 667–669

    Article  Google Scholar 

  93. Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits. Physical Review Letters, 1999, 83(14): 2845–2848

    Article  Google Scholar 

  94. Marquier F, Greffet J-J, Collin S, et al. Resonant transmission through a metallic film due to coupled modes. Opt Express, 2005, 13(1): 70–76

    Article  Google Scholar 

  95. García-Vidal F J, Martín-Moreno L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Physical Review B, 2002, 66(15): 155412

    Article  Google Scholar 

  96. Yuan G-H, Wang P, Zhang D-G, et al. Extraordinary transmission through metallic grating with subwavelength slits for s-polarization illumination. Chinese Physics Letters, 2007, 24(6): 1600–1602

    Article  Google Scholar 

  97. Li L. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society of America A, 1996, 13(9): 1870–1876

    Article  Google Scholar 

  98. Lee B J, Chen Y-B, Zhang Z M. Confinement of infrared radiation to nanometer scales through metallic slit arrays. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(4): 608–619

    Article  Google Scholar 

  99. Chen Y-B, Lee B J, Zhang Z M. Infrared radiative properties of submicron metallic slit arrays. Journal of Heat Transfer, 2008, 130(8): 082404

    Article  Google Scholar 

  100. Chan D L C, Soljacic M, Joannopoulos J D. Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs. Physical Review E, 2006, 74(3): 036615

    Article  Google Scholar 

  101. Narayanaswamy A, Chen G. Thermal emission control with one-dimensional metallodielectric photonic crystals. Physical Review B, 2004, 70(12): 125101

    Article  Google Scholar 

  102. Enoch S, Simon J J, Escoubas L, et al. Simple layer-by-layer photonic crystal for the control of thermal emission. Applied Physics Letters, 2005, 86(26): 261101.

    Article  Google Scholar 

  103. Huang X, Wang D, Prakash P, Singh J. Design of computational analysis of highly reflective multiple layered thermal barrier coating structure. Materials Science and Engineering A, 2007, 460–461: 101–110

  104. Gaspar-Armenta J A, Villa F. Photonic surface-wave excitation: photonic crystal-metal interface. Journal of the Optical Society of America B, 2003, 20(11): 2349–2354

    Article  Google Scholar 

  105. Lee B J, Fu C J, Zhang Z M. Coherent thermal emission from one-dimensional photonic crystals. Applied Physics Letters, 2005, 879(7): 071904

    Article  Google Scholar 

  106. Lee B J, Zhang Z M. Coherent thermal emission from modified periodic multilayer structures. Journal of Heat Transfer, 2007, 129(1): 17–26

    Article  MathSciNet  Google Scholar 

  107. Lee B J, Zhang Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 2006, 100(6): 063529

    Article  MathSciNet  Google Scholar 

  108. Lee B J, Chen Y-B, Zhang Z M. Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters, 2008, 33(3): 204–206

    Article  Google Scholar 

  109. Lee B J, Zhang Z M. Indirect measurements of coherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer (accepted)

  110. Laroche M, Carminati R, Greffet J-J. Coherent thermal antenna using a photonic crystal slab. Physical Review Letters, 2006, 96(12): 123903

    Article  Google Scholar 

  111. Chan D L C, Soljacic M, Joannopoulos J D. Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Optics Express, 2006, 14(19): 8785–8796

    Article  Google Scholar 

  112. Drevillon J, Ben-Abdallah P. Ab initio design of coherent thermal sources. Journal of Applied Physics, 2007, 102(11): 114305

    Article  Google Scholar 

  113. Battula A, Chen S C. Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance. Physical Review B, 2006, 74(24): 245407

    Article  Google Scholar 

  114. Lin K-Q, Wei L-M, Zhang D-G, et al. Temperature effects on prism-based surface plasmon resonance sensor. Chinese Physics Letters, 2007, 24(11): 3081–3084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceji Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, C., Zhang, Z.M. Thermal radiative properties of metamaterials and other nanostructured materials: A review. Front. Energy Power Eng. China 3, 11–26 (2009). https://doi.org/10.1007/s11708-009-0009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-009-0009-x

Keywords

Navigation