Skip to main content
Log in

Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

A 180-day incubation experiment was conducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg−1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concentrations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descending order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manureamended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Considering the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abd Elrahman S H, Mostafa M A M, Taha T A, Elsharawy M A O, Eid M A (2012). Effect of different amendments on soil chemical characteristics, grain yield and elemental content of wheat plants grown on salt-affected soil irrigated with low quality water. Annals of Agricultural Science, 57(2): 175–182

    Article  Google Scholar 

  • Amezketa E, Aragüés R, Gazol R (2005). Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agronomy Journal, 97(3): 983–989

    Article  Google Scholar 

  • Bertrand I, Chabbert B, Kurek B, Recous S (2006). Can the biochemical features and histology of wheat residues explain their decomposition in soil? Plant and Soil, 281(1–2): 291–307

    Article  Google Scholar 

  • Clark G J, Dodgshun N, Sale P W G, Tang C (2007). Changes in chemical and biological properties of sodic clay subsoil with addition of organic amendments. Soil Biology and Biochemistry, 39(11): 2806–2817

    Article  Google Scholar 

  • Harris M A, Rengasamy P (2004). Sodium affected subsoils, gypsum, and green -manure: interactions and implications for amelioration of toxic red mud wastes. Environmental Geology, 45(8): 1118–1130

    Article  Google Scholar 

  • Jones B E H, Haynes R J, Phillips I R (2012). Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium. Journal of Environmental Management, 95(1): 29–38

    Article  Google Scholar 

  • Khair T S Al-Busaidi, Buerkert A, Joergensen R G (2014). Carbon and nitrogen mineralization at different salinity levels in Omani low organic matter soils. Journal of Arid Environments, 100–101: 106–110

    Google Scholar 

  • Khan K S, Gattinger A, Buegger F, Schloter M, Joergensen R G (2008). Microbial use of organic amendments in saline soils monitored by changes in the 13C/12C ratio. Soil Biology and Biochemistry, 40(5): 1217–1224

    Article  Google Scholar 

  • Khalil M I, Hossain M B, Schmidhalter U (2005). Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biology and Biochemistry, 37(8): 1507–1518

    Article  Google Scholar 

  • Lakhdar A, Rabhi M, Ghnaya T, Montemurro, Jedidi N, Abdelly C (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171(1–3): 29–37

    Article  Google Scholar 

  • Lee J (2010). Effect of application methods of organic fertilizer on growth, soil chemical properties and microbial densities in organic bulb onion production. Scientia Horticulture (Amsterdam), 24(3): 299–305

    Article  Google Scholar 

  • Li J L (2008). Research on the effect of saline wetland from pulp wastewater irrigation in Yellow River Dleta. Dissertation for Ph.D Degree. Qingdao: Ocean Univiersity of China, 15–16(in Chinese)

    Google Scholar 

  • López-Piñeiro A, Murillo S, Barreto C, Muñoz A, Rato JM, Albarrán A, García A (2007). Changes in organic matter and residual effect of amendment with two-phase olive-mill waste on degraded agricultural soils. Science of the Total Environment, 378(1–2): 84–89

    Article  Google Scholar 

  • Lu R K (2000). Methods for chemical analysis of soil agriculture. Beijing: China Agricultural Science and Technology Press, 108–110; 238–240 (in Chinese)

    Google Scholar 

  • Madejón E, Burgos P, López R, Cabrera F (2003). Agricultural use of three organic residues:effect on orange production and on properties of a soil of the ‘Comarca Costade Huelva’ (SWSpain). Nutrient Cycling in Agroecosystems, 65(3): 281–288

    Article  Google Scholar 

  • Mahmoodabadia M, Yazdanpanah N, Sinobas L R, Pazira E, Neshat A (2013). Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agricultural Water Management, 120: 30–38

    Article  Google Scholar 

  • Nardi S, Morari F, Berti A, Tosoni M, Giardini L (2004). Soil organic matter properties after 40 years of different use of organic and mineral fertilizers. European Journal of Agronomy, 21(3): 357–367

    Article  Google Scholar 

  • Omeira N, Barbour E K, Nehme P A, Hamadeh S K, Zurayk R, Bashour I (2006). Microbiological and chemical properties of litter from different chicken types and production systems. Science of the Total Environment, 367(1): 156–162

    Article  Google Scholar 

  • Pathak H, Rao D L N (1998). Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biology and Biochemistry, 30(6): 695–702

    Article  Google Scholar 

  • Powlson D S, Hirsch P R, Brookes P C (2001). The role of soil microorganisms in soil organic matter conservation in the tropics. Nutrient Cycling in Agroecosystems, 61(1/2): 41–51

    Article  Google Scholar 

  • Qadir M, Noble A D, Oster J D, Schubert S, Ghafoor A (2005). Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: a review. Soil Use Manage, 21(2): 173–180

    Article  Google Scholar 

  • Qadir M, Oster J D, Schubert S, Noble A D, Sahrawat K L (2007). Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 96: 197–202

    Article  Google Scholar 

  • Raychev T, Popandova S, Józefaciuk G, Hajnos M, Sokolowska Z (2001). Physicochemical reclamation of saline soils using coal powder. International Agrophysics, 15: 51–54

    Google Scholar 

  • Rengasamy P (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5):1017–1023

    Article  Google Scholar 

  • Rogival D, Scheirs J, Blust R(2007). Transfer and accumulation of metals in a soil diet-wood mouse food chain along a metal pollution gradient, Environmental Pollution, 145: 516–528

    Article  Google Scholar 

  • Sadiq M, Hassan G, Chaudhry G A, Hussain N, Mehdi S M, Jamil M (2003). Appropriate land preparation methods and sulphuric acid use for amelioration of salt affected soils. Journal of Agronomy, 2(3): 138–145

    Article  Google Scholar 

  • Tejada M, Genzalez J L (2006). Crushed cotton gin compost on soil biological properties and rice yield. European Journal of Agronomy, 25(1): 22–29

    Article  Google Scholar 

  • Walker D J, Bernal M P (2008). The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresource Technology, 99(2): 396–403

    Article  Google Scholar 

  • Walpola B C, Arunakumara K K I U (2011). Carbon and nitrogen mineralization of a plant residue amended soil: The effect of salinity stress. Bangladesh Journal of Scientific and Industrial Research, 46(4): 565–572

    Google Scholar 

  • Wang H, Wang R Q, Yu Y, Myron J M, Zhang L J (2011). Soil organic carbon of degraded wetlands treated with freshwater in the Yellow River Delta, China. Journal of Environmental Management, 92(10): 2628–2633

    Article  Google Scholar 

  • Woods P V, Raison R J (1983). Decomposition of litter in sub-alpine forests of Eucalyptus delegatensis, E. pauciflora and E. dives. Australian Journal of Ecology, 8(3): 287–299

    Article  Google Scholar 

  • Xu J M, Tang C, Chen Z L (2006). The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology and Biochemistry, 38(4): 709–719

    Article  Google Scholar 

  • Yan F, Schubert S (2000). Soil pH changes after application of plant shoot materials of faba bean and wheat. Plant and Soil, 220(1/2):279–287

    Article  Google Scholar 

  • Yao L X, Li G L, Tu S H, Gavin S, He Z H (2007). Salinity of animal manure ad potential risk of secondary soil salinization through successive manure application. Science of Total Environment, 383(1–3): 106–114

    Google Scholar 

  • Yazdanpanah N, Mahmoodabadi M (2013). Reclamation of calcareous salinesodic soil using different amendments: Time changes of soluble cations in leachate. Arab Journal of Geoscience, 6(7): 2519–2528

    Article  Google Scholar 

  • Zanuzzi A, Arocena J M, van Mourik J M, Faz Cano A (2009). Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology. Geoderma, 154(1–2): 69–75

    Article  Google Scholar 

  • Zhao J J, Guo Y, Chen X, Shi Y, Han X R (2006). Influences of organic material on organic phosphorus fractions and mineralization processes in soils. Soils, 38(6): 740–744 (in Chinese)

    Google Scholar 

  • Zhou H, Liu M, Yu WT (2008). Properties of decomposition and residue of organic materials and its mixture in aquic brown earth. Chinese Journal of Soil Science, 39(6): 1311–1315 (in Chinese)

    Google Scholar 

  • Zhou J Y, Tu M Q, Xiong Y X, Ding F Z (2007). The simultaneous measurement on commutative Ca, Mg, K and Na in the soil by ICPAES. Resources Environment and Engineering, 21(4): 486–488 (in Chinese)

    Google Scholar 

  • Zhuang P, McBride M B, Xia H P, Li N Y, Li Z A (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407(5): 1551–1561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Liu, J., Liu, C. et al. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China. Front. Earth Sci. 9, 259–267 (2015). https://doi.org/10.1007/s11707-014-0463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0463-6

Keywords

Navigation