Skip to main content
Log in

A review of industrial symbiosis research: theory and methodology

  • Review Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

The theory, methodologies, and case studies in the field of industrial symbiosis have been developing for nearly 30 years. In this paper, we trace the development history of industrial symbiosis, and review its current theoretical and methodological bases, as well as trends in current research. Based on the research gaps that we identify, we provide suggestions to guide the future development of this approach to permit more comprehensive analyses. Our theoretical review includes key definitions, a classification system, and a description of the formation and development mechanisms. We discuss methodological studies from the perspective of individual industrial metabolic processes and network analysis. Analyzing specific metabolic processes can help to characterize the exchanges of materials and energy, and to reveal the ecological performance and economic benefits of the symbiosis. Network analysis methods are increasingly being used to analyze both the structural and functional characteristics of a system. Our suggestions for future research focus on three aspects: how to quantitatively classify industrial symbiosis systems, monitor the dynamics of a developing industrial symbiosis system, and analyze its internal attributes more deeply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allenby B, Richards D (1994). The Greening of Industrial Systems. Washington, DC: National Academy Press, 23–37

    Google Scholar 

  • Ashton W S (2008). Understanding the organization of industrial ecosystems: a social network approach. J Ind Ecol, 12(1): 34–51

    Google Scholar 

  • Ashton W S, Bain A C (2012). Assessing the “short mental distance in eco-industrial networks”. J Ind Ecol, 16(1): 70–82

    Google Scholar 

  • Ayres R U (1988). Self organization in biology & economics. Laxenburg, Austria: International Institute for Applied Systems Analysis (IIASA) Research Report #RR-88-1

    Google Scholar 

  • Ayres R U, Simonis U E (1994). Industrial Metabolism, Restructuring for Sustainable Development. Tokyo: United Nations University Press, 1–21

    Google Scholar 

  • Baird D, Fath B D, Ulanowicz R E, Asmus H, Asmus R (2009). On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis. Ecol Modell, 220(23): 3465–3471

    Google Scholar 

  • Behera S K, Kim J H, Lee S Y, Suh S, Park H S (2012). Evolution of ‘designed’ industrial symbiosis networks in the Ulsan Eco-industrial Park: ‘Research and development into business’ as the enabling framework. J Clean Prod, 29–30: 103–112

    Google Scholar 

  • Bodini A, Bondavalli C (2002). Towards a sustainable use of water resources: a whole-ecosystem approach using network analysis. Int J Environ Pollut, 18(5): 463–485

    Google Scholar 

  • Chen D J (2003). Analysis, integration and complexity study of industrial ecosystems. Dissertation for Ph.D Degree. Beijing: Tsinghua University, Beijing (in Chinese)

    Google Scholar 

  • Chen L, Wang R S, Yang J X, Shi Y L (2010). Structural complexity analysis for industrial ecosystems: a case study on Lubei industrial ecosystem in China. Ecol Complex, 7(2): 179–187

    Google Scholar 

  • Chertow M, Miyata Y (2011). Assessing collective firm behavior: comparing industrial symbiosis with possible alternatives for individual companies in Oahu, HI. Bus Strategy Environ, 20(4): 266–280

    Google Scholar 

  • Chertow M R (1999). Industrial symbiosis: a multi-firm approach to sustainability. In: Proceedings of the 1999 Greening of Industry Network Conference, 8th, Chapel Hill, NC

    Google Scholar 

  • Chertow M R (2000). Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ, 25(1): 313–337

    Google Scholar 

  • Chertow M R (2007). “Uncovering” industrial symbiosis. J Ind Ecol, 11(1): 11–30

    Google Scholar 

  • Chertow M R, Lombardi D R (2005). Quantifying economic and environmental benefits of co-located firms. Environ Sci Technol, 39(17): 6535–6541

    Google Scholar 

  • Christian R R, Brinson MM, Dame J K, Johnson G, Peterson C H, Baird D (2009). Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary. Ecol Modell, 220(22): 3113–3122

    Google Scholar 

  • Christian R R, Luczkovich J J (1999). Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecol Modell, 117(1): 99–124

    Google Scholar 

  • Cohen-Rosenthal E, McGilliard T, Bell M (1997). Designing ecoindustrial parks: the US experience. Available at: http://teclim.ufba.br/jsf/ecodesign/dsgn0205.PDF (Accessed April 2014)

    Google Scholar 

  • Costa I, Ferrão P (2010). A case study of industrial symbiosis development using a middle-out approach. J Clean Prod, 18(10–11): 984–992

    Google Scholar 

  • Côté R P, Cohen-Rosenthal E (1998). Designing eco-industrial parks: a synthesis of some experiences. J Clean Prod, 6(3–4): 181–188

    Google Scholar 

  • Dai T J (2010). Two quantitative indices for the planning and evaluation of eco-industrial parks. Resour Conserv Recy, 54(7): 442–448

    Google Scholar 

  • Dame J K, Christian R R (2008). Evaluation of ecological network analysis: validation of output. Ecol Modell, 210(3): 327–338

    Google Scholar 

  • Darlington C D (1951). Mendel and the determinants. In: Dunn L C ed. Genetics in the Twentieth Century. New York: Macmillan, 315–332

    Google Scholar 

  • Desrochers P (2004). Industrial symbiosis: the case for market coordination. J Clean Prod, 12(8–10): 1099–1110

    Google Scholar 

  • Dolginow D (2011). Why product metabolism is every startup’s first KPI. Available at: http://venturefizz.com/blog/why-product-metabolism-every-startup%E2%80%99s-first-kpi (Accessed November 2012)

    Google Scholar 

  • Doménech T, Davies M (2009). The social aspects of industrial symbiosis: the application of social network analysis to industrial symbiosis networks. Progr Ind Ecol Internat J, 6(1): 68–99

    Google Scholar 

  • Doménech T, Davies M (2011a). Structure and morphology of industrial symbiosis networks: the case of Kalundborg. Procedia Soc Behav Sci, 10: 79–89

    Google Scholar 

  • Doménech T, Davies M (2011b). The role of embeddedness in industrial symbiosis networks: phases in the evolution of industrial symbiosis networks. Bus Strategy Environ, 20(5): 281–296

    Google Scholar 

  • Dong L, Fujita T, Zhang H, Dai M, Fujii M, Ohnishi S, Geng Y, Liu Z (2013). Promoting low-carbon city through industrial symbiosis: a case in China by applying HPIMO model. Energy Policy, 61: 864–873

    Google Scholar 

  • Dong L, Gu F, Fujita T, Hayashi Y, Gao J (2014). Uncovering opportunity of low-carbon city promotion with industrial system innovation: case study on industrial symbiosis projects in China. Energy Policy, 65: 388–397

    Google Scholar 

  • Dougherty L (1997). Denmark shows the way. Available at: http://www.dollarsandsense.org/archives/1997/0597dougherty.html (Accessed November 2012).

    Google Scholar 

  • Ehrenfeld J, Chertow M (2002). Industrial symbiosis: the legacy of Kalundborg. In: Ayres R, Ayres L eds. Cheltenham: Handbook of Industrial Ecology

  • Ehrenfeld J, Gertler N (1997). Industrial ecology in practice: the evolution of interdependence at Kalundborg. J Ind Ecol, 1(1): 67–79

    Google Scholar 

  • Elabras Veiga L B, Magrini A (2009). Eco-industrial park development in Rio de Janeiro, Brazil: a tool for sustainable development. J Clean Prod, 17(7): 653–661

    Google Scholar 

  • Encyclopedia Britannica (1992). Symbiosis. In: The New Encyclopedia Britannica. Encyclopedia Britannica Inc., London, UK. Vol. 14

    Google Scholar 

  • Engberg H (1992). Industrial Symbiosis in Denmark. New York: Leonard N. Stern School of Business

    Google Scholar 

  • Fath B D, Patten B C (1998). Network synergism: emergence of positive relations in ecological systems. Ecol Modell, 107(2–3): 127–143

    Google Scholar 

  • Fath B D, Patten B C (1999). Review of the foundations of network environ analysis. Ecosystems (N Y), 2(2): 167–179

    Google Scholar 

  • Feng L, Sun B S (2009). Optimization of industrial symbiosis networks in acid areas. Arid Land Geogr, 32(6): 971–977 (in Chinese)

    Google Scholar 

  • Frosch R A, Gallopoulos N (1989). Strategies for manufacturing. Sci Am, 261(3): 144–152

    Google Scholar 

  • Gertler N, Ehrenfeld J R (1996). A down-to-earth approach to clean production. Technol Rev, 99(2): 48–54

    Google Scholar 

  • Giacomo D A, Maria F D N (2011). Italy’s urban waste metabolism. Available at: http://ddd.uab.cat/pub/worpap/2011/hdl_2072_97405/WorkPapEnvSci_2011-01.pdf (Accessed November 2012)

    Google Scholar 

  • Gibbs D, Deutz P (2007). Reflections on implementing industrial ecology through eco-industrial park development. J Clean Prod, 15(17): 1683–1695

    Google Scholar 

  • Golev A, Corder G D (2012). Developing a classification system for regional resource synergies. Miner Eng, 29: 58–64

    Google Scholar 

  • Gonela V, Zhang J (2014). Design of the optimal industrial symbiosis system to improve bioethanol production. J Clean Prod, 64(1): 513–534

    Google Scholar 

  • Goto N, Tachibana J, Fujie K (2005). Environmental management system based on material flow analysis to establish and maintain eco town. J Ind Eng Chem, 11(6): 818–825

    Google Scholar 

  • Graedel T, Allenby B R (1995). Industrial Ecology. New Jersey: Prentice-Hall, 217–233

    Google Scholar 

  • Guo X, Zhong S H (2005). The model of eco-industrial parks based on the theory of species. Sci Technol Progr Policy, 23(8): 75–77 (in Chinese)

    Google Scholar 

  • Harper E, Graedel T (2004). Industrial ecology: a teenager’s progress. Technol Soc, 26(2–3): 433–445

    Google Scholar 

  • Heeres R R, Vermeulen W J V, de Walle F B D (2004). Eco-industrial park initiatives in the USA and the Netherlands: first lessons. J Clean Prod, 12(8–10): 985–995

    Google Scholar 

  • Jacobsen N B (2006). Industrial symbiosis in Kalundborg, Denmark: a quantitative assessment of economic and environmental aspects. J Ind Ecol, 10(1–2): 239–255

    Google Scholar 

  • Korhonen J (2004). Industrial ecology in the strategic sustainable development model: strategic applications of industrial ecology. J Clean Prod, 12(8–10): 809–823

    Google Scholar 

  • Kronenberg J (2007). Ecological Economics and Industrial Ecology: A Case Study of the Integrated Product Policy of the European Union (Routledge Explorations in Environmental Economics). U.K.: Routledge, 88–127

    Google Scholar 

  • Kurup B, Altham W, van Berkel R (2005). Triple bottom line accounting applied for industrial symbiosis. In: The 4th Australian Conference on Life Cycle Assessment. Australian Life Cycle Assessment Society, Sydney

    Google Scholar 

  • Lambert A J D, Boons F A (2002). Eco-industrial parks: stimulating sustainable development in mixed industrial parks. Technovation, 22(8): 471–484

    Google Scholar 

  • Li S, Zhang Y, Yang Z, Liu H, Zhang J (2012). Ecological relationship analysis of the urban metabolic system of Beijing, China. Environ Pollut, 170: 169–176

    Google Scholar 

  • Lowe E A (1997). Creating by-product resource exchanges: strategies for eco-industrial parks. J Clean Prod, 5(1–2): 57–65

    Google Scholar 

  • Lowe E A, Evans L (1995). Industrial ecology and industrial ecosystems. J Clean Prod, 3(1–2): 47–53

    Google Scholar 

  • Lowe E A, Moran S R, Holmes D B (1998). Eco-industrial Parks: A Handbook for Local Development teams, Draft. Indigo Development, RPP International, Oakland, CA

    Google Scholar 

  • Lu Y, Su M R, Liu G R, Chen B, Zhou S Y, Jiang M M (2012). Ecological network analysis for a low-carbon and high-tech industrial park. The Scientific World Journal, 305474

    Google Scholar 

  • Marinova D, Annandale D, Phillimore J (2006). The International Handbook on Environmental Technology Management. Northampton, MA: Edward Elgar Publishing Limited, 13–32

    Google Scholar 

  • Martin S A, Weitz A, Cushman R, Sharma A, Lindrooth R C, Moran S R (1996). Eco-Industrial Parks: A Case Study and Analysis of Economic, Environmental, Technical, and Regulatory Issues. Research Triangle Institute, Research Triangle Park, NC. Project Number 6050 FR

    Google Scholar 

  • Meneghetti A, Nardin G (2012). Enabling industrial symbiosis by a facilities management optimization approach. J Clean Prod, 35: 263–273

    Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (2006a). Standard for Sector-specific Eco-industrial Parks (On Trial). Available at: http://english.mep.gov.cn/standards_reports/standards/others1/others3/200808/t20080828_127809.htm (Accessed April 2014)

    Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (2006b). Standard for Venous Industry Based Eco-industrial Parks (On Trial). Available at: http://english.mep.gov.cn/standards_-reports/standards/others1/others3/200808/t20080828_127811.htm (Accessed April 2014)

    Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (2009). Standard for Sector-integrate Eco-industrial Parks. Available at: http://english.mep.gov.cn/standards_reports/standards/others1/others3/201102/t20110216_200842.htm (Accessed April 2014)

    Google Scholar 

  • Mirata M, Emtairah T (2005). Industrial symbiosis networks and the contribution to environmental innovation: the case of the Landskrona industrial symbiosis programme. J Clean Prod, 13(10–11): 993–1002

    Google Scholar 

  • Ohnishi S, Fujita T, Chen X D, Fujii M (2012). Econometric analysis of the performance of recycling projects in Japanese eco-towns. J Clean Prod, 33: 217–225

    Google Scholar 

  • Paine R T (1969). A note on trophic complexity and community stability. Am Nat, 103(929): 91–93

    Google Scholar 

  • Paquin R, Howard-Grenville J (2009). Facilitating regional industrial symbiosis: network growth in the UK’s National Industrial Symbiosis Programme. In: Boons F, Howard-Grenville J, eds. The Social Embeddedness of Industrial Ecology. Cheltenham: Edward Elgar, 103–127

    Google Scholar 

  • Park H S, Rene E R, Choi S M, Chiu A S (2008). Strategies for sustainable development of industrial park in Ulsan, South Korea—From spontaneous evolution to systematic expansion of industrial symbiosis. J Environ Manage, 87(1): 1–13

    Google Scholar 

  • Patten B C (1982). Environs-relativistic elementary-particles for ecology. Am Nat, 119(2): 179–219

    Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F Jr (1998). Fishing down marine food webs. Science, 279(5352): 860–863

    Google Scholar 

  • Pedersen E (1999). Remarks. In: Allen P, Bonazzi C, Gee D, eds. Metaphors for Change: Partnerships, Tools and Civic Action for Sustainability. Sheffield: Greenleaf Publishing, 97–100

    Google Scholar 

  • Potts Carr A J (1998). Choctaw eco-industrial park: an ecological approach to industrial land-use planning and design. Landsc Urban Plan, 42(2–4): 239–257

    Google Scholar 

  • Renner G T (1947). Geography of industrial localization. Econ Geogr, 23(3): 167–189

    Google Scholar 

  • Sato M, Ushiro Y, Matsunaga H (2004). Categorisation of eco-town projects in Japan. In: International Symposium on Green Technology for Resources and Materials Recycling, Seoul, Korea

    Google Scholar 

  • Schlarb M (2001). Eco-industrial Development: A Strategy for Building Sustainable Communities. Ithaca, NY: Cornell University

    Google Scholar 

  • Schwarz E J, Steininger K W (1997). Implementing nature’s lesson: the industrial recycling network enhancing regional development. J Clean Prod, 5(1–2): 47–56

    Google Scholar 

  • Scott J (2000). Social Network Analysis: A Handbook. London, U.K.: Sage Publications

    Google Scholar 

  • Sendra C, Gabarrell X, Vicent T (2007). Material flow analysis adapted to an industrial area. J Clean Prod, 15(17): 1706–1715

    Google Scholar 

  • Shi H, Chertow M, Song Y Y (2010). Developing country experience with eco-industrial parks: a case study of the Tianjin Economic-Technological Development Area in China. J Clean Prod, 18(3): 191–199

    Google Scholar 

  • Song X L, Chen L, Song Q (2008). Study on development models of eco-industrial parks: based on food chain types. Resour Devel Market, 2008(10): 918–921 (in Chinese)

    Google Scholar 

  • Szyrmer J, Ulanowicz R E (1987). Total flows in ecosystems. Ecol Modell, 35(1–2): 123–136

    Google Scholar 

  • Tian J P, Liu W, Lai B J, Li X, Chen L J (2013). Study of the performance of eco-industrial park development in China. J Clean Prod, 64(1): 486–494

    Google Scholar 

  • Tian J P, Shi H, Chen Y, Chen L J (2012). Assessment of industrial metabolisms of sulfur in a Chinese fine chemical industrial park. J Clean Prod, 32: 262–272

    Google Scholar 

  • van Berkel R, Fujita T, Hashimoto S, Fujii M (2009). Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan. Environ Sci Technol, 43(5): 1271–1281

    Google Scholar 

  • Venta G J, Nisbet M (1997). Opportunities for industrial ecological parks in Canada, case study: Sarnia-Lambton Industrial Complex. Environment Canada, Ottawa

    Google Scholar 

  • Walters C, Christensen V, Pauly D (1997). Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev Fish Biol Fish, 7(2): 139–172

    Google Scholar 

  • Wang Q (2009). Industrial symbiosis model analysis for eco-industrial parks. Sci Tech Inf Gansu, 38(5): 72–73 (in Chinese)

    Google Scholar 

  • Wang Z, Shi L, Jia X P (2009). Weighted connectance for industrial communities based on structural holes theory. Acta Ecol Sin, 29(2): 810–814 (in Chinese)

    Google Scholar 

  • Wang Z H, Yin J H (2005). Research on operation pattern of industrial symbiosis network in eco-industry park. China Soft Sci, 2005(2): 80–85 (in Chinese)

    Google Scholar 

  • Whipple S J, Borrett S R, Patten B C, Gattie D K, Schramski J R, Bata S A (2007). Indirect effects and distributed control in ecosystems: comparative network environ analysis of a seven-compartment model of nitrogen flow in the Neuse River estuary, USA—Time series analysis. Ecol Modell, 206(1–2): 1–17

    Google Scholar 

  • Wolf A, Eklund M, Söderstrom M (2007). Developing integration in a local industrial ecosystem: an explorative approach. Bus Strategy Environ, 16(6): 442–455

    Google Scholar 

  • Wright R A, Côté R P, Duffy J, Brazner J (2009). Diversity and connectance in an industrial context: the case of Burnside Industrial Park. J Ind Ecol, 13(4): 551–564

    Google Scholar 

  • Xia X F, Xie H Y, Xie T, Hai R T (2006). Product metabolism in aluminum eco-industrial park of Baotou. Environ Sci Technol, 29(9): 62–63 (in Chinese)

    Google Scholar 

  • Yang S L, Feng N P (2008). A case study of industrial symbiosis: Nanning Sugar Co., Ltd. in China. Resour Conserv Recycling, 52(5): 813–820

    Google Scholar 

  • Yuan Z W, Bi J, Wang X Y, Zhang B, Huang J (2004). Theory and control mechanism of eco-industrial parks. Acta Ecol Sin, 24(11): 2501–2508 (in Chinese)

    Google Scholar 

  • Yuan Z W, Shi L (2009). Improving enterprise competitive advantage with industrial symbiosis: case study of a smeltery in China. J Clean Prod, 17(14): 1295–1302

    Google Scholar 

  • Zhang H, Dong L, Li H Q, Fujita T, Ohnishi S, Tang Q (2013a). Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: a case study with carbon flow analysis. Energy Policy, 61: 1400–1411

    Google Scholar 

  • Zhang Y (2013). Urban metabolism: a review of research methodologies. Environ Pollut, 178: 463–473

    Google Scholar 

  • Zhang Y, Yang Z, Fath B D (2010a). Ecological network analysis of an urban water metabolic system: model development, and a case study for Beijing. Sci Total Environ, 408(20): 4702–4711

    Google Scholar 

  • Zhang Y, Yang Z F, Fath B D, Li S S (2010b). Ecological network analysis of an urban energy metabolic system: model development, and a case study of four Chinese cities. Ecol Modell, 221(16): 1865–1879

    Google Scholar 

  • Zhang Y, Zheng H M, Chen B, Yang N J (2013b). Social network analysis and network connectedness analysis for industrial symbiotic systems: model development and case study. Front Earth Sci, 7(2): 169–181

    Google Scholar 

  • Zheng H M, Zhang Y, Yang Z F, Liu G Y, Su M Y, Chen B (2013). Exploring improvement paths for eight industrial symbiosis complexes throughout the world. J Environ Account Manage, 1: 295–306

    Google Scholar 

  • Zhu Q E, Lowe E A, Wei Y, Barnes D (2007). Industrial symbiosis in China: a case study of the Guitang Group. J Ind Ecol, 11(1): 31–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhang or Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zheng, H., Chen, B. et al. A review of industrial symbiosis research: theory and methodology. Front. Earth Sci. 9, 91–104 (2015). https://doi.org/10.1007/s11707-014-0445-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0445-8

Keywords

Navigation