Skip to main content
Log in

Analysis of spatio-temporal variability of aerosol optical depth with empirical orthogonal functions in the Changjiang River Delta, China

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

This work aims to analyze the spatial and temporal variability of aerosol optical depth (AOD) from 2000 to 2012 in the Changjiang River Delta (CRD), China. US Terra satellite moderate resolution imaging spectroradiometer (MODIS) AOD and Ångström exponent (α) data constitute a baseline, with the empirical orthogonal functions (EOFs) method used as a major data analysis method. The results show that the maximum value of AOD observed in June is 1.00±0.12, and the lowest value detected in December is 0.40±0.05. AOD in spring and summer is higher than in autumn and winter. On the other hand, the α-value is lowest in spring (0.86±0.10), which are affected by coarse particles. High α-value appears in summer (1.32±0.05), which indicate that aerosols are dominated by fine particles. The spatial distribution of AOD has a close relationship with terrain and population density. Generally, high AODs are distributed in the low-lying plains, and low AODs in the mountainous areas. The spatial and temporal patterns of seasonal AODs show that the first three EOF modes cumulatively account for 77% of the total variance. The first mode that explains 67% of the total variance shows the primary spatial distribution of aerosols, i.e., high AODs are distributed in the northern areas and low AODs in the southern areas. The second mode (7%) shows that the monsoon climate probably plays an important role in modifying the distribution of aerosols, especially in summer and winter. In the third mode (3%), this distribution of aerosols usually occurs in spring and winter when the prevailing northwestern or western winds could bring aerosol particles from the inland areas into the central regions of the CRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ångström A (1929). On the atmospheric transmission of sun radiation and on dust in the air. Geogr Anal, 12: 130–159

    Google Scholar 

  • Chu D A, Kaufman Y J, Ichoku C, Remer L A, Tanr D, Holben B N (2002). Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett, 29(12): 8007

    Article  Google Scholar 

  • Deng X, Deng W, He D (2010). Spatial-temporal features of atmospheric aerosol in East China in recent years. Transactions of Atmospheric Sciences, 33(3): 347–354 (in Chinese)

    Google Scholar 

  • Duan H, Zhao J, Li Y (2013). The frequencies, severities, and driving factors of the sand-dust weather processes occurred in Northern China in the spring of 2011. J Desert Res, 33(1): 179–186 (in Chinese)

    Google Scholar 

  • Duan X, Yu X, Liu X (2009). Analysis on the character of regional development of 30 years in the Yangtze River Delta. Econ Geogr, 29(2): 185–192 (in Chinese)

    Google Scholar 

  • Eck T F, Holben B N, Reid J S, Dubovik O, Smirnov A, O’Neill N T, Slutsker I, Kinne S (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res, 104(D24): 31333–31349

    Article  Google Scholar 

  • Engel-Cox J A, Holloman C H, Coutant B W, Hoff R M (2004). Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos Environ, 38(16): 2495–2509

    Article  Google Scholar 

  • He Q, Li C, Geng F, Lei Y, Li Y (2012). Study on long-term aerosol distribution over the land of East China using MODIS data. Aerosol and Air Quality Research, 12(3): 304–319

    Google Scholar 

  • He Q, Li C, Tang X, Li H, Geng F, Wu Y (2010). Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sens Environ, 114(8): 1649–1661

    Article  Google Scholar 

  • Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Ver-mote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998). AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 66(1): 1–16

    Article  Google Scholar 

  • Holben B N, Tanré D, Smirnov A, Eck T F, Slutsker I, Abuhassan N, Newcomb W W, Schafer J S, Chatenet B, Lavenu F, Kaufman Y J, Castle J V, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karneli A, O’Neill N T, Pietras C, Pinker R T, Voss K, Zibordi G (2001). An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res, 106(D11): 12067–12097

    Article  Google Scholar 

  • Hu T, Sun Z, Zhang H (2008). Spatial/Temporal variations and trends of aerosol optical depth at 380 nm wavelength in China during 1980–2001. Journal of Applied Meteorological Science, 19(5): 513–521 (in Chinese)

    Google Scholar 

  • Ichoku C, Chu D A, Mattoo S, Kaufman Y J, Remer L A, Tanré D, Slutsker I, Holben B N (2002). A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys Res Lett, 29(12): 8006

    Article  Google Scholar 

  • Kaskaoutis D G, Kambezidis H D, Adamopoulos A D, Kassomenos P A (2006). On the Characterization of aerosols using the Ångström exponent in the Athens area. J Atmos Sol Terr Phys, 68(18): 2147–2163

    Article  Google Scholar 

  • Kaufman Y J, Tanré D, Boucher O (2002). A satellite view of aerosols in the climate system. Nature, 419(6903): 215–223

    Article  Google Scholar 

  • Kaufman Y J, Tanré D, Remer L A, Vermote E F, Chu A, Holben B N (1997). Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res, D, Atmospheres, 102(D14): 17051–17067

    Article  Google Scholar 

  • Kennedy I M (2007). The health effects of combustion-generated aerosols. Proc Combust Inst, 31(2): 2757–2770

    Article  Google Scholar 

  • Kim H S, Chung Y S, Lee S G (2013). Analysis of spatial and seasonal distributions of MODIS aerosol optical properties and ground-based measurements of mass concentrations in the Yellow Sea region in 2009. Environ Monit Assess, 185(1): 369–382

    Article  Google Scholar 

  • Kim S W, Yoon S C, Kim J, Kim S Y (2007). Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos Environ, 41(8): 1634–1651

    Article  Google Scholar 

  • King M D, Kaufman Y J, Menzel W P, Tanré D (1992). Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans Geosci Rem Sens, 30(1): 2–27

    Article  Google Scholar 

  • King M D, Kaufman Y J, Tanré D, Nakajima T (1999). Remote sensing of tropospheric aerosols from space: past, present, and future. Bull Am Meteorol Soc, 80(11): 2229–2259

    Article  Google Scholar 

  • King M D, Menzel W P, Kaufman Y J, Tanré D, Gao B, Platnick S, Ackerman S A, Remer L A, Pincus R, Hubanks P A (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Rem Sens, 41(2): 442–458

    Article  Google Scholar 

  • Levy R C, Remer L A, Tanré D, Mattoo S, Kaufman Y J (2009). Algorithm for Remote Sensing of Tropospheric Aerosol over Dark Targets from MODIS: Collections 005 and 051: Revision 2; Feb 2009

    Google Scholar 

  • Li C, Lau A K H, Mao J, Chu D A (2005). Retrieval, validation, and application of the 1km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Trans Geosci Rem Sens, 43(11): 2650–2658

    Article  Google Scholar 

  • Li C, Mao J, Lau K H A, Chen J, Yuan Z, Liu X, Zhu A, Liu G (2003). Characteristics of distribution and seasonal variation of aerosol optical depth in eastern China with MODIS products. Chin Sci Bull, 48(22): 2488–2495

    Google Scholar 

  • North G R, Bell T L, Cahalan R F, Moeng F J (1982). Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev, 110(7): 699–706

    Article  Google Scholar 

  • Pan L, Che H, Geng F, Xia X, Wang Y, Zhu C, Chen M, Gao W, Guo J (2010). Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos Environ, 44(21–22): 2587–2596

    Article  Google Scholar 

  • Pope C A 3rd, Dockery D W (2006). Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc, 56(6): 709–742

    Article  Google Scholar 

  • Preisendorfer RW, Mobley C D (1988). Principal component analysis in meteorology and oceanography. Amsterdam: Elsevier

    Google Scholar 

  • Qiu J, Yang L (2000). Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980–1994. Atmos Environ, 34(4): 603–609

    Article  Google Scholar 

  • Remer L A, Kaufman Y J, Tanré D, Mattoo S, Chu D A, Martins J V, Li R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E, Holben B N (2005). The MODIS aerosol algorithm, products, and validation. J Atmos Sci, 62(4): 947–973

    Article  Google Scholar 

  • Shrestha P, Barros A P (2010). Joint spatial variability of aerosol, clouds and rainfall in the Himalayas from satellite data. Atmos Chem Phys, 10(17): 8305–8317

    Article  Google Scholar 

  • Su J, Zhu B, Kang H, Wang H, Wang T (2012). Applications of pollutions released from crop residues at open burning in Yangtze River Delta Region in air quality model. Environ Sci, 33(5): 1418–1424 (in Chinese)

    Google Scholar 

  • Yang K L (2002). Spatial and seasonal variation of PM10 mass concentrations in Taiwan. Atmos Environ, 36(21): 3403–3411

    Article  Google Scholar 

  • Zhao Q, Gao W, Xiang W, Shi R, Liu C, Zhai T, Huang H A, Gumley L E, Strabala K (2013). Analysis of air quality variability in Shanghai using AOD and API data in the recent decade. Front Earth Sci, 7(2): 159–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, T., Zhao, Q., Gao, W. et al. Analysis of spatio-temporal variability of aerosol optical depth with empirical orthogonal functions in the Changjiang River Delta, China. Front. Earth Sci. 9, 1–12 (2015). https://doi.org/10.1007/s11707-014-0444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0444-9

Keywords

Navigation