Skip to main content
Log in

A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

A simplified physically-based algorithm for surface soil moisture inversion from satellite microwave radiometer data is presented. The algorithm is based on a radiative transfer model, and the assumption that the optical depth of the vegetation is polarization independent. The algorithm combines the effects of vegetation and roughness into a single parameter. Then the microwave polarization difference index (MPDI) is used to eliminate the effects of surface temperature, and to obtain soil moisture, through a nonlinear iterative procedure. To verify the present algorithm, the 6.9 GHz dual-polarized brightness temperature data from the Advanced Microwave Scanning Radiometer (AMSR-E) were used. Then the soil moisture values retrieved by the present algorithm were validated by in-situ data from 20 sites in the Tibetan Plateau, and compared with both the NASA AMSR-E soil moisture products, and Soil Moisture and Ocean Salinity (SMOS) soil moisture products. The results show that the soil moisture retrieved by the present algorithm agrees better with ground measurements than the two satellite products. The advantage of the algorithm is that it doesn’t require field observations of soil moisture, surface roughness, or canopy biophysical data as calibration parameters, and needs only single-frequency brightness temperature observations during the whole retrieval process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anterrieu E, Khazaal A (2011). One year of RFI detection and quantification with L1a signals provided by SMOS reference radiometers. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2245–2248

    Google Scholar 

  • Becker F, Choudhury B J (1988). Relative sensitivity of normalized difference vegetation index (NDVI) and microwave polarization difference index (MPDI) for vegetation and desertification monitoring. Remote Sens Environ, 24(2): 297–311

    Article  Google Scholar 

  • Berthon L, Mialon A, Cabot F, Bitar A A, Richaume P, Kerr Y, Leroux D, Bircher S, Lawrence H, Quesney A, Jacquette E (2012). CATDS level 3 data product description. CESBIO-SA Technical Report

    Google Scholar 

  • Chen L, Shi J C, Wigneron J P, Chen K S (2010). A parameterized surface emission model at L-band for soil moisture retrieval. IEEE Geosci Remote Sens Lett, 7(1): 127–130

    Article  Google Scholar 

  • Chen Y Y, Yang K, Qin J, Zhao L, Tang W J, Han M L (2013). Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan plateau. J Geophys Res, D, Atmospheres, 118, doi: 10.1002/jgrd.50301

    Google Scholar 

  • De Jeu R A M, Owe M (2003). Further validation of a new methodology for surface moisture and vegetation optical depth retrieval. Int J Remote Sens, 24(22): 4559–4578

    Article  Google Scholar 

  • Dente L, Su Z B, Wen J (2012a). Validation of SMOS soil moisture products over the Maqu and Twente regions. Sensors (Basel), 12(8): 9965–9986

    Article  Google Scholar 

  • Dente L, Vekerdy Z, Wen J, Su Z B (2012b). Maqu network for validation of satellite-derived soil moisture products. Int J Appl Earth Obs Geoinf, 17: 55–65

    Article  Google Scholar 

  • Draper C S, Walker J P, Steinle P J, De Jeu R A M, Holmes T R H (2009). An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens Environ, 113(4): 703–710

    Article  Google Scholar 

  • Du J Y (2012). A method to improve satellite soil moisture retrievals based on Fourier analysis. Geophys Res Lett, 39(15): L15404, doi: 10.1029/2012GL052435

    Article  Google Scholar 

  • Entekhabi D, Njoku E, O’Neill P E, Kellogg K H, Crow W T, Edelstein W N, Entin J K, Goodman S D, Jackson T J, Johnson J, Kimball J, Piepmeier J R, Koster R D, Martin N, McDonald K C, Moghaddam M, Moran S, Reichle R, Shi J C, Spencer M W, Thrman S W, Tsang L, van Zyl J (2010). The soil moisture active passive (SMAP) mission. Proc IEEE, 98(5): 704–716

    Article  Google Scholar 

  • Guo P, Shi J C, Liu Q, Du J Y (2013). A new algorithm for soil moisture retrieval with L-band radiometer. IEEE J Sel Top Appl Farth Observ Remote Sens, 6(3): 1147–1155

    Article  Google Scholar 

  • Hallikainen M T, Ulaby F T, Dobson M C, El-Rayes M A, Wu L K (1985). Microwave dielectric behavior of wet soil-part 1: empirical models and experimental observations. IEEE Trans Geosci Rem Sens, GE-23(1): 25–34

    Article  Google Scholar 

  • Holmes T R H, De Jeu R A M, Owe M, Dolman A J (2009). Land surface temperature from Ka band (37 GHz) passive microwave observations. J Geophys Res, 114(D4): D04113

    Google Scholar 

  • Hong S (2010). Global retrieval of small-scale roughness over land surfaces at microwave frequency. J Hydrol (Amst), 389(1–2): 121–126

    Article  Google Scholar 

  • Jackson T J (1993). Measuring surface soil moisture using passive microwave remote sensing. Hydrol Processes, 7(2): 139–152

    Article  Google Scholar 

  • Jackson T J, Cosh M H, Bindlish R, Starks P J, Bosch D D, Seyfried M, Goodrich D C, Moran M S, Du J Y (2010). Validation of Advanced Microwave Scanning Radiometer soil moisture products. IEEE Trans Geosci Rem Sens, 48(12): 4256–4272

    Article  Google Scholar 

  • Jackson T J, Hawley M E, O’Neill P E (1987). Preplanting soil moisture using passive microwave sensors. J Am Water Resour Assoc, 23(1): 11–19

    Article  Google Scholar 

  • Jackson T J, Le Vine D M, Hsu A Y, Oldak A, Starks P J, Swift C T, Isham J, Haken M (1999). Soil moisture mapping at regional scales using microwave radiometry: the southern Great Plains hydrology experiment. IEEE Trans Geosci Rem Sens, 37(5): 2136–2151

    Article  Google Scholar 

  • Jacquette E, Al Bita A, Mialon A, Kerr Y, Quesney A, Cabot F, Richaume P (2010). SMOS CATDS level 3 global products over land. Proc SPIE, 7824: 78240K, 78240K-6

    Article  Google Scholar 

  • Jin R, Li X, Che T (2009). A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature. Remote Sens Environ, 113(12): 2651–2660

    Article  Google Scholar 

  • Kerr Y H, Waldteufel P, Wigneron J P, Martinuzzi J, Font J, Berger M (2001). Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. IEEE Trans Geosci Rem Sens, 39(8): 1729–1735

    Article  Google Scholar 

  • Koike T, Nakamura Y, Kaihotsu I, Davaa G, Matsuura N, Tamagawa K, Fujii H (2004). Development of an advanced microwave scanning radiometer (AMSR-E) algorithm of soil moisture and vegetation water content. Annu J Hydraul Eng, JSCE, 48: 217–222

    Article  Google Scholar 

  • Lacava T, Coviello I, Faruolo M, Mazzeo G, Pergola N, Tramutoli V (2013). A multitemporal investigation of AMSR-E C-band radiofrequency interference. IEEE Trans Geosci Rem Sens, 51(4): 2007–2015

    Article  Google Scholar 

  • Lu H, Shi J C (2012). Reconstruction and analysis of temporal and spatial variations in surface soil moisture in China using remote sensing. Chin Sci Bull, 57(22): 2824–2834

    Article  Google Scholar 

  • Mao K B, Tang H J, Zhang L X, Li M C, Guo Y, Zhao D Z (2008). A method for retrieving soil moisture in Tibet region by utilizing microwave index from TRMM/TMI data. Int J Remote Sens, 29(10): 2903–2923

    Article  Google Scholar 

  • Meesters A G, De Jeu R A M, Owe M (2005). Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci Remote Sens Lett, 2(2): 121–123

    Article  Google Scholar 

  • Mladenova I, Lakshmi V, Jackson T J, Walker J P, Merlin O, De Jeu R A M (2011). Validation of AMSR-E soil moisture using L-band airborne radiometer data from National Airborne Field Experiment 2006. Remote Sens Environ, 115(8): 2096–2103

    Article  Google Scholar 

  • Mo T, Choudhury B J, Schmugge T J, Wang J R, Jackson T J (1982). A model for microwave emission from vegetation-covered fields. J Geophys Res, 87(C13): 11229–11237

    Article  Google Scholar 

  • Njoku E G, Ashcroft P, Chan T K, Li L (2005). Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans Geosci Rem Sens, 43(5): 938–947

    Article  Google Scholar 

  • Njoku E G, Chan S K (2006). Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens Environ, 100(2): 190–199

    Article  Google Scholar 

  • Njoku E G, Entekhabi D (1996). Passive microwave remote sensing of soil moisture. J Hydrol (Amst), 184(1–2): 101–129

    Article  Google Scholar 

  • Njoku E G, Jackson T J, Lakshmi V, Chan T K, Nghiem S V (2003). Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Rem Sens, 41 (2): 215–229

    Article  Google Scholar 

  • Owe M, De Jeu R A M, Holmes T R H (2008). Multisensor historical climatology of satellite-derived global land surface moisture. J Geophys Res, 113(F1): F01002

    Google Scholar 

  • Paloscia S, Macelloni G, Santi E (2006). Soil moisture estimates from AMSR-E brightness temperatures by using a dual-frequency algorithm. IEEE Trans Geosci Rem Sens, 44(11): 3135–3144

    Article  Google Scholar 

  • Paloscia S, Pampaloni P (1988). Microwave polarization index for monitoring vegetation growth. IEEE Trans Geosci Rem Sens, 26(5): 617–621

    Article  Google Scholar 

  • Reynolds C A, Jackson T J, Rawls W J (2000). Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res, 36(12): 3653–3662

    Article  Google Scholar 

  • Roy A, Royer A, Wigneron J P, Langlois A, Bergeron J, Cliche P (2012). A simple parameterization for a boreal forest radiative transfer model at microwave frequencies. Remote Sens Environ, 124: 371–383

    Article  Google Scholar 

  • Rüdiger C, Calvet J C, Gruhier C, Holmes T R H, De Jeu R A M, Wagner W (2009). An intercomparison of ERS-Scat and AMSR-E soil moisture observations with model simulations over France. J Hydrometeorol, 10(2): 431–447

    Article  Google Scholar 

  • Saha S K (1995). Assessment of regional soil moisture conditions by coupling satellite sensor data with a soil-plant system heat and moisture balance model. Int J Remote Sens, 16(5): 973–980

    Article  Google Scholar 

  • Saleh K, Wigneron J P, de Rosnay P, Calvet J C, Kerr Y (2006). Semi-empirical regressions at L-band applied to surface soil moisture retrievals over grass. Remote Sens Environ, 101(3): 415–426

    Article  Google Scholar 

  • Santi E, Pettinato S, Paloscia S, Pampaloni P, Macelloni G, Brogioni M (2012). An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo. Hydrol Earth Syst Sci, 16(10): 3659–3676

    Article  Google Scholar 

  • Shi J C, Jackson T, Tao J, Du J, Bindlish R, Lu L, Chen K S (2008). Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens Environ, 112(12): 4285–4300

    Article  Google Scholar 

  • Shi J C, Jiang L M, Zhang L X, Chen K S, Wigneron J P, Chanzy A, Jackson T J (2006). Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Trans Geosci Rem Sens, 44(11): 3145–3153

    Article  Google Scholar 

  • Skou N, Misra S, Balling J E, Kristensen S S, Sobjaerg S S (2010). L-band RFI as experienced during airborne campaigns in preparation for SMOS. IEEE Trans Geosci Rem Sens, 48(3): 1398–1407

    Article  Google Scholar 

  • Su Z, Wen J, Dente L, van der Velde R, Wang L, Ma Y, Yang K, Hu Z (2011). The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol Earth Syst Sci, 15(7): 2303–2316

    Article  Google Scholar 

  • Van de Griend A A, Owe M (1994). Microwave vegetation optical depth and inverse modelling of soil emissivity using Nimbus/SMMR satellite observations. Meteorol Atmos Phys, 54(1–4): 225–239

    Article  Google Scholar 

  • Wagner W, Naeimi V, Scipal K, de Jeu R A M, Martínez-Fernández J (2007). Soil moisture from operational meteorological satellites. Hydrogeol J, 15(1): 121–131

    Article  Google Scholar 

  • Wang J R, Choudhury B J (1981). Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency. J Geophys Res, 86 (C6): 5277–5282

    Article  Google Scholar 

  • Wang L L, Qu J J (2009). Satellite remote sensing applications for surface soil moisture monitoring: a review. Front Earth Sci China, 3 (2): 237–247

    Article  Google Scholar 

  • Wen J, Su Z B, Ma Y M (2003). Determination of land surface temperature and soil moisture from tropical rainfall measuring mission/microwave imager remote sensing data. J Geophys Res, 108(D2): 4038

    Article  Google Scholar 

  • Wigneron J P, Calvet J C, Pellarin T, Van de Griend A A, Berger M, Ferrazzoli P (2003). Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans. Remote Sens Environ, 85(4): 489–506

    Article  Google Scholar 

  • Wigneron J P, Laguerre L, Kerr Y H (2001). A simple parameterization of the L-Band microwave emission from rough agricultural soils. IEEE Trans Geosci Rem Sens, 39(8): 1697–1707

    Article  Google Scholar 

  • Xie H, Ye J S, Liu X M, E C Y (2010). Warming and drying trends on the Tibetan Plateau (1971–2005). Theor Appl Climatol, 101(3–4): 241–253

    Article  Google Scholar 

  • Zhang X F, Zhao J P, Sun Q, Wang X Y, Guo Y L, Li J (2011). Soil moisture retrieval from AMSR-E data in Xinjiang (China): models and validation. IEEE J Sel Top Appl Earth Observ Remote Sens, 4 (1): 117–127

    Article  Google Scholar 

  • Zhao T J, Zhang L X, Jiang L M, Zhao S J, Chai L N, Jin R (2011a). A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery. Hydrol Processes, 25(11): 1704–1716

    Article  Google Scholar 

  • Zhao T J, Zhang L X, Shi J C, Jiang L M (2011b). A physically based statistical methodology for surface soil moisture retrieval in the Tibet Plateau using microwave vegetation indices. J Geophys Res, 116 (D8): D08116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Li, Z., Chen, Q. et al. A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data. Front. Earth Sci. 8, 427–438 (2014). https://doi.org/10.1007/s11707-014-0412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0412-4

Keywords

Navigation