Skip to main content
Log in

Physical modification of polyetheretherketone for orthopedic implants

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Polyetheretherketone (PEEK) is regarded as one of the most potential candidates for replacing current implant applications. To obtain good bone-implant interfaces, many modification methods have been developed to enable PEEK and PEEK-based composites from bio-inert to bioactive. Among them, physical methods have aroused significant attention and been widely used to modify PEEK for orthopedic implants. This review summarizes current physical modification techniques of PEEK for orthopedic applications, which include composite strategies, surface coating methods and irradiation treatments. The positive consequences of those modification methods will encourage continuing investigations and stimulate the wide range of applications of PEEK-based implants in orthopedics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stolarski T A. Tribology of polyetheretherketone. Wear, 1992, 158(1–2): 71–78

    Article  Google Scholar 

  2. Bishop S M. The mechanical performance and impact behaviour of carbon-fibre reinforced PEEK. Composite Structures, 1985, 3(3–4): 295–318

    Article  Google Scholar 

  3. Fujihara K, Huang Z M, Ramakrishna S, et al. Feasibility of knitted carbon/PEEK composites for orthopedic bone plates. Biomaterials, 2004, 25(17): 3877–3885

    Article  Google Scholar 

  4. Searle O B, Pfeiffer R H. Victrex® poly (ethersulfone) (PES) and Victrex® poly (etheretherketone) (PEEK). Polymer Engineering and Science, 1985, 25(8): 474–476

    Article  Google Scholar 

  5. Jamison R D, Maharaj G R. Intraoperative impact: characterization and laboratory simulation on composite hip prostheses. In: Jamison R D, Gilbertson L N, Composite Materials for Implant Applications in the Human Body: Characterization and Testing. ASTM International STP 1178, 1993, 98–108

    Chapter  Google Scholar 

  6. Kurtz S M, Devine J N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28(32): 4845–4869

    Article  Google Scholar 

  7. Saito N, Aoki K, Usui Y, et al. Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development. Chemical Society Reviews, 2011, 40(7): 3824–3834

    Article  Google Scholar 

  8. Williams D F, McNamara A, Turner R M. Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications. Journal of Materials Science Letters, 1987, 6(2): 188–190

    Article  Google Scholar 

  9. Wenz L M, Merritt K, Brown S A, et al. In vitro biocompatibility of polyetheretherketone and polysulfone composites. Journal of Biomedical Materials Research, 1990, 24(2): 207–215

    Article  Google Scholar 

  10. Hunter A, Archer C W, Walker P S, et al. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials, 1995, 16(4): 287–295

    Article  Google Scholar 

  11. Pioch T, Stotz S, Staehle H J, et al. Applications of confocal laser scanning microscopy to dental bonding. Advances in Dental Research, 1997, 11(4): 453–461

    Article  Google Scholar 

  12. Scotchford C A, Garle C, Batchelor J, et al. Use of a novel carbon fibre composite material for the femoral stem component of a THR system: in vitro biological assessment. Biomaterials, 2003, 24(26): 4871–4879

    Article  Google Scholar 

  13. Lin TW, Corvelli A A, Frondoza C G, et al. Glass peek composite promotes proliferation and osteocalcin production of human osteoblastic cells. Journal of Biomedical Materials Research, 1997, 36(2): 137–144

    Article  Google Scholar 

  14. Katzer A, Marquardt H, Westendorf J, et al. Polyetheretherketone cytotoxicity and mutagenicity in vitro. Biomaterials, 2002, 23(8): 1749–1759

    Article  Google Scholar 

  15. Jockisch K A, Brown S A, Bauer TW, et al. Biological response to chopped-carbon-fiber-reinforced peek. Journal of Biomedical Materials Research, 1992, 26(2): 133–146

    Article  Google Scholar 

  16. Schwitalla A, Müller W D. PEEK dental implants: a review of the literature. The Journal of Oral Implantology, 2013, 39(6): 743–749

    Article  Google Scholar 

  17. Rattier B D, Hoffman A S, Schoen F J, et al. Biomaterials science: an introduction to materials in medicine. Journal of Clinical Engineering, 1997, 22(1): 26

    Article  Google Scholar 

  18. Brennan W J, Feast W J, Munro H S, et al. Investigation of the ageing of plasma oxidized PEEK. Polymer, 1991, 32(8): 1527–1530

    Article  Google Scholar 

  19. Briem D, Strametz S, Schröoder K, et al. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. Journal of Materials Science: Materials in Medicine, 2005, 16(7): 671–677

    Google Scholar 

  20. Charest J L, Eliason M T, García A J, et al. Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates. Biomaterials, 2006, 27(11): 2487–2494

    Article  Google Scholar 

  21. Anselme K, Linez P, Bigerelle M, et al. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials, 2000, 21(15): 1567–1577

    Article  Google Scholar 

  22. Roeder R K, Converse G L, Kane R J, et al. Hydroxyapatitereinforced polymer biocomposites for synthetic bone substitutes. JOM, 2008, 60(3): 38–45

    Article  Google Scholar 

  23. Wang Q Q, Wu J J, Unsworth A, et al. Biotribological study of large diameter ceramic-on-CFR-PEEK hip joint including fluid uptake, wear and frictional heating. Journal of Materials Science: Materials in Medicine, 2012, 23(6): 1533–1542

    Google Scholar 

  24. Scholes S C, Unsworth A. The wear performance of PEEKOPTIMA based self-mating couples. Wear, 2010, 268(3–4): 380–387

    Article  Google Scholar 

  25. Doorn P F, Campbell P A, Amstutz H C. Metal versus polyethylene wear particles in total hip replacements. A review. Clinical Orthopaedics and Related Research, 1996, 329(Suppl): S206–S216

    Article  Google Scholar 

  26. Catelas I, Huk O L, Petit A, et al. Flow cytometric analysis of macrophage response to ceramic and polyethylene particles: effects of size, concentration, and composition. Journal of Biomedical Materials Research, 1998, 41(4): 600–607

    Article  Google Scholar 

  27. Ingham E, Fisher J. Biological reactions to wear debris in total joint replacement. Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 2000, 214(1): 21–37

    Article  Google Scholar 

  28. Ingram J H, Stone M, Fisher J, et al. The influence of molecular weight, crosslinking and counterface roughness on TNF-α production by macrophages in response to ultra high molecular weight polyethylene particles. Biomaterials, 2004, 25(17): 3511–3522

    Article  Google Scholar 

  29. Xiong D, Xiong L, Liu L. Preparation and tribological properties of polyetheretherketone composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 93B(2): 492–496

    Article  Google Scholar 

  30. Rousseau M A, Lazennec J Y, Saillant G. Circumferential arthrodesis using PEEK cages at the lumbar spine. Journal of Spinal Disorders & Techniques, 2007, 20(4): 278–281

    Article  Google Scholar 

  31. Pape D, Adam F, Fritsch E, et al. Primary lumbosacral stability after open posterior and endoscopic anterior fusion with interbody implants: a roentgen stereophotogrammetric analysis. Spine, 2000, 25(19): 2514–2518

    Article  Google Scholar 

  32. McMillin C R. Evaluation of PEKEKK composites for spine implants. In: 38th International SAMPE Symposium, Anaheim, CA, USA. 1993, 591–598

    Google Scholar 

  33. Dickinson A S, Taylor A C, Browne M. The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation. Journal of Biomechanics, 2012, 45(4): 719–723

    Article  Google Scholar 

  34. Kim I Y, Sugino A, Kikuta K, et al. Bioactive composites consisting of PEEK and calcium silicate powders. Journal of Biomaterials Applications, 2009, 24(2): 105–118

    Article  Google Scholar 

  35. Scotchford C A, Garle M J, Batchelor J, et al. Use of a novel carbon fibre composite material for the femoral stem component of a THR system: in vitro biological assessment. Biomaterials, 2003, 24(26): 4871–4879

    Article  Google Scholar 

  36. Sagomonyants K B, Jarman-Smith M L, Devine J N, et al. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials, 2008, 29(11): 1563–1572

    Article  Google Scholar 

  37. Bonfield W, Grynpas M D, Tully A E, et al. Hydroxyapatite reinforced polyethylene — a mechanically compatible implant material for bone replacement. Biomaterials, 1981, 2(3): 185–186

    Article  Google Scholar 

  38. Abu Bakar M S, Cheng M H W, Tang S M, et al. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials, 2003, 24(13): 2245–2250

    Article  Google Scholar 

  39. Yu S, Hariram K P, Kumar R, et al. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials, 2005, 26(15): 2343–2352

    Article  Google Scholar 

  40. Wang L, Weng L, Song S, et al. Mechanical properties and microstructure of polyetheretherketone-hydroxyapatite nano composite materials. Materials Letters, 2010, 64(20): 2201–2204

    Article  Google Scholar 

  41. Ma R, Weng L, Bao X, et al. Characterization of in situ synthesized hydroxyapatite/polyetheretherketone composite materials. Materials Letters, 2012, 71: 117–119

    Article  Google Scholar 

  42. Ma R, Weng L, Bao X, et al. In vivo biocompatibility and bioactivity of in situ synthesized hydroxyapatite/polyetheretherketone composite materials. Journal of Applied Polymer Science, 2013, 127(4): 2581–2587

    Article  Google Scholar 

  43. Ma R, Fang L, Luo Z, et al. Mechanical performance and in vivo bioactivity of functionally graded PEEK-HA biocomposite materials. Journal of Sol-Gel Science and Technology, 2014, 1: 1–7

    Google Scholar 

  44. Wang M, Joseph R, Bonfield W. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials, 1998, 19(24): 2357–2366

    Article  Google Scholar 

  45. Santos C, Luklinska Z B, Clarke R L, et al. Hydroxyapatite as a filler for dental composite materials: mechanical properties and in vitro bioactivity of composites. Journal of Materials Science: Materials in Medicine, 2001, 12(7): 565–573

    Google Scholar 

  46. Wong K L, Wong C T, Liu W C, et al. Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites. Biomaterials, 2009, 30(23–24): 3810–3817

    Article  Google Scholar 

  47. Li Y W, Leong J C Y, Lu W W, et al. A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study. Journal of Biomedical Materials Research, 2000, 52(1): 164–170

    Article  Google Scholar 

  48. Shorr E, Carter A C. The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in man. Bulletin of the Hospital for Joint Diseases, 1952, 13(1): 59–66

    Google Scholar 

  49. Cox S C, Jamshidi P, Grover L M, et al. Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Materials Science and Engineering C, 2014, 35: 106–114

    Article  Google Scholar 

  50. Okayama S, Akao M, Nakamura S, et al. The mechanical properties and solubility of strontium-substituted hydroxyapatite. Bio-Medical Materials and Engineering, 1991, 1(1): 11–17

    Google Scholar 

  51. Boanini E, Torricelli P, Fini M, et al. Osteopenic bone cell response to strontium-substituted hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2011, 22(9): 2079–2088

    Google Scholar 

  52. Qi Z, Zhang Q, Dai H, et al. Effects of β-TCP ceramics on intracellular Ca2+ concentration, mineralization of osteoblast and protein structure. Journal of Wuhan University of Technology (Materials Science Edition), 2011, 26(6): 1064–1067

    Article  Google Scholar 

  53. Petrovic L, Pohle D, Münstedt H, et al. Effect of β-TCP filled polyetheretherketone on osteoblast cell proliferation in vitro. Journal of Biomedical Science, 2006, 13(1): 41–46

    Article  Google Scholar 

  54. von Wilmowsky C, Vairaktaris E, Pohle D, et al. Effects of bioactive glass and β-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. Journal of Biomedical Materials Research Part A, 2008, 87A(4): 896–902

    Article  Google Scholar 

  55. VonWilmonsky C, Lutz R, Meisel U, et al. In vivo evaluation of β-TCP containing 3D laser sintered poly (ether ether ketone) composites in pigs. Journal of Bioactive and Compatible Polymers, 2009, 24(2): 169–184

    Article  Google Scholar 

  56. Suska F, Omar O, Emanuelsson L, et al. Enhancement of CRFPEEK osseointegration by plasma-sprayed hydroxyapatite: A rabbit model. Journal of Biomaterials Applications, 2014, 29(2): 234–242

    Article  Google Scholar 

  57. Lee J H, Jang H L, Lee KM, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomaterialia, 2013, 9(4): 6177–6187

    Article  Google Scholar 

  58. Gardon M, Latorre A, Torrell M, et al. Cold gas spray titanium coatings onto a biocompatible polymer. Materials Letters, 2013, 106: 97–99

    Article  Google Scholar 

  59. Fauchais P, Vardelle A, Dussoubs B. Quo vadis thermal spraying? Journal of Thermal Spray Technology, 2001, 10(1): 44–66

    Article  Google Scholar 

  60. Fauchais P. Understanding plasma spraying. Journal of Physics D: Applied Physics, 2004, 37(9): R86–R108

    Article  Google Scholar 

  61. Furlong R J, Osborn J F. Fixation of hip prostheses by hydroxyapatite ceramic coatings. The Journal of Bone and Joint Surgery (British Volume), 1991, 73(5): 741–745

    Google Scholar 

  62. Montanaro L, Arciola C R, Campoccia D, et al. In vitro effects on MG63 osteoblast-like cells following contact with two roughnessdiffering fluorohydroxyapatite-coated titanium alloys. Biomaterials, 2002, 23(17): 3651–3659

    Article  Google Scholar 

  63. Kurtz S M. PEEK Biomaterials Handbook. Oxford, UK: William Andrew, 2011, 145–161

    Google Scholar 

  64. Tsui Y C, Doyle C, Clyne T W. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels. Biomaterials, 1998, 19(22): 2015–2029

    Article  Google Scholar 

  65. Marrocco T, McCartney D G, Shipway P H, et al. Production of titanium deposits by cold-gas dynamic spray: Numerical modeling and experimental characterization. Journal of Thermal Spray Technology, 2006, 15(2): 263–272

    Article  Google Scholar 

  66. Lupoi R, O’Neill W. Deposition of metallic coatings on polymer surfaces using cold spray. Surface and Coatings Technology, 2010, 205(7): 2167–2173

    Article  Google Scholar 

  67. Hahn B D, Park D S, Choi J J, et al. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery. Applied Surface Science, 2013, 283: 6–11

    Article  Google Scholar 

  68. Yao C, Storey D, Webster T J. Nanostructured metal coatings on polymers increase osteoblast attachment. International Journal of Nanomedicine, 2007, 2(3): 487–492

    Google Scholar 

  69. Han CM, Lee E J, Kim H E, et al. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials, 2010, 31(13): 3465–3470

    Article  Google Scholar 

  70. Barkarmo S, Wennerberg A, Hoffman M, et al. Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. Journal of Biomedical Materials Research Part A, 2013, 101A(2): 465–471

    Article  Google Scholar 

  71. Jung H D, Sun Park H, Kang M H, et al. Polyetheretherketone/magnesium composite selectively coated with hydroxyapatite for enhanced in vitro bio-corrosion resistance and biocompatibility. Materials Letters, 2014, 116: 20–22

    Article  Google Scholar 

  72. Ha S W, Hauert R, Ernst K H, et al. Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications. Surface and Coatings Technology, 1997, 96(2–3): 293–299

    Article  Google Scholar 

  73. Rochford E T J, Poulsson A H C, Salavarrieta Varela J, et al. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface. Colloids and Surfaces B: Biointerfaces, 2014, 113: 213–222

    Article  Google Scholar 

  74. Garbassi F, Morra M, Occhiello E. Polymer Surfaces: from Physics to Technology. Chichester, UK: John Wiley and Sons, 1994, 221–454

    Google Scholar 

  75. Mathieson I, Bradley R H. Effects of ultraviolet/ozone on the surface chemistry of polymer films. Advanced Engineering Materials, 1994, 99(100): 185–191

    Google Scholar 

  76. Riveiro A, Soto R, Comesana R, et al. Laser surface modification of PEEK. Applied Surface Science, 2012, 258(23): 9437–9442

    Article  Google Scholar 

  77. Akkan C K, Hammadeh M, Brück S, et al. Plasma and short pulse laser treatment of medical grade PEEK surfaces for controlled wetting. Materials Letters, 2013, 109: 261–264

    Article  Google Scholar 

  78. Mangipudi V, Tirrell M, Pocius A V. Direct measurement of the surface energy of corona-treated polyethylene using the surface forces apparatus. Langmuir, 1995, 11(1): 19–23

    Article  Google Scholar 

  79. Strobel M, Walzak M J, Hill J M, et al. A comparison of gas-phase methods of modifying polymer surfaces. Journal of Adhesion Science and Technology, 1995, 9(3): 365–383

    Article  Google Scholar 

  80. Sasuga T, Hagiwara M. Mechanical relaxation of crystalline poly (aryl-ether-ether-ketone) (PEEK) and influence of electron beam irradiation. Polymer, 1986, 27(6): 821–826

    Article  Google Scholar 

  81. Iwanaga S, Akiyama Y, Kikuchi A, et al. Fabrication of a cell array on ultrathin hydrophilic polymer gels utilising electron beam irradiation and UV excimer laser ablation. Biomaterials, 2005, 26(26): 5395–5404

    Article  Google Scholar 

  82. Kim K H, Cho J S, Choi D J, et al. Hydrophilic group formation and cell culturing on polystyrene Petri-dish modified by ionassisted reaction. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 175–177: 542–547

    Article  Google Scholar 

  83. Khoury J, Kirkpatrick S R, Maxwell M, et al. Neutral atom beam technique enhances bioactivity of PEEK. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 307: 630–634

    Article  Google Scholar 

  84. Matrab T, Chehimi M M, Boudou J P, et al. Surface functionalization of ultrananocrystalline diamond using atom transfer radical polymerization (ATRP) initiated by electro-grafted aryldiazonium salts. Diamond and Related Materials, 2006, 15(4–8): 639–644

    Article  Google Scholar 

  85. Kyomoto M, Moro T, Takatori Y, et al. Self-initiated surface grafting with poly(2-methacryloyloxyethyl phosphorylcholine) on poly(ether-ether-ketone). Biomaterials, 2010, 31(6): 1017–1024

    Article  Google Scholar 

  86. Kyomoto M, Ishihara K. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly(ether ether ketone) by photoirradiation. ACS Applied Materials & Interfaces, 2009, 1(3): 537–542

    Article  Google Scholar 

  87. Lego B, Skene W G, Giasson S. Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces. Langmuir, 2008, 24(2): 379–382

    Article  Google Scholar 

  88. Jin Z, Feng W, Zhu S, et al. Protein-resistant polyurethane by sequential grafting of poly(2-hydroxyethyl methacrylate) and poly (oligo(ethylene glycol) methacrylate) via surface-initiated ATRP. Journal of Biomedical Materials Research Part A, 2010, 95A(4): 1223–1232

    Article  Google Scholar 

  89. Fu K Y, Cheung T L, Mei Y F, et al. Surface modification of polymeric materials by plasma immersion ion implantation. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 237(1–2): 417–421

    Article  Google Scholar 

  90. Lu T, Qiao Y Q, Liu X Y. Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus, 2012, 2(3): 325–336

    Article  Google Scholar 

  91. Hegemann D, Brunner H, Oehr C. Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 208: 281–286

    Article  Google Scholar 

  92. Liu X M, Wu S L, Chu P K, et al. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids. Applied Surface Science, 2007, 253(6): 3154–3159

    Article  Google Scholar 

  93. Chan C M, Ko T M, Hiraoka H. Polymer surface modification by plasmas and photons. Surface Science Reports, 1996, 24(1–2): 1–54

    Article  Google Scholar 

  94. Ahad I U, Bartnik A, Fiedorowicz H, et al. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. Journal of Biomedical Materials Research Part A, 2013 doi: 10.1002/jbm.a.34958

    Google Scholar 

  95. Poulsson A H C, Mitchell S A, Davidson MR, et al. Attachment of human primary osteoblast cells to modified polyethylene surfaces. Langmuir, 2009, 25(6): 3718–3727

    Article  Google Scholar 

  96. Davidson M R, Mitchell S A, Bradley R H. Surface studies of low molecular weight photolysis products from UV-ozone oxidized polystyrene. Surface Science, 2005, 581(2–3): 169–177

    Article  Google Scholar 

  97. Laurens P, Ould Bouali M, Meducin F, et al. Characterization of modifications of polymer surfaces after excimer laser treatments below the ablation threshold. Applied Surface Science, 2000, 154–155: 211–216

    Article  Google Scholar 

  98. Laurens P, Sadras B, Decobert F, et al. Enhancement of the adhesive bonding properties of PEEK by excimer laser treatment. International Journal of Adhesion and Adhesives, 1998, 18(1): 19–27

    Article  Google Scholar 

  99. Kirkpatrick A, Kirkpatrick S, Walsh M, et al. Investigation of accelerated neutral atom beams created from gas cluster ion beams. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 307: 281–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YW., Zhang, LN., Hou, ZT. et al. Physical modification of polyetheretherketone for orthopedic implants. Front. Mater. Sci. 8, 313–324 (2014). https://doi.org/10.1007/s11706-014-0266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-014-0266-4

Keywords

Navigation