Skip to main content
Log in

Recent advances in SERS detection of perchlorate

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Perchlorate has recently emerged as a widespread environmental contaminant of healthy concern. Development of novel detection methods for perchlorate with the potential for field use has been an urgent need. The investigation has shown that surface-enhanced Raman scattering (SERS) technique has great potential to become a practical analysis tool for the rapid screening and routine monitoring of perchlorate in the field, particularly when coupled with portable/handheld Raman spectrometers. In this review article, we summarize progress made in SERS analysis of perchlorate in water and other media with an emphasis on the development of SERS substrates for perchlorate detection. The potential of this technique for fast screening and field testing of perchlorate-contaminated environmental samples is discussed. The challenges and possible solutions are also addressed, aiming to provide a better understanding on the development directions in the research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang C, Lippincott L, Yoon I H, Meng X. Modeling, rate-limiting step investigation, and enhancement of the direct bio-regeneration of perchlorate laden anion-exchange resin. Water Research, 2009, 43(1): 127–136

    Article  CAS  Google Scholar 

  2. Renner R. U.S.Focus.Perchlorate rockets to US national attention. Journal of Environmental Monitoring, 1999, 1(3): 37N–38N

    Article  Google Scholar 

  3. Yoon I H, Meng X, Wang C, Kim K W, Bang S, Choe E, Lippincott L. Perchlorate adsorption and desorption on activated carbon and anion exchange resin. Journal of Hazardous Materials, 2009, 164(1): 87–94

    Article  CAS  Google Scholar 

  4. Perchlorate: occurrence is widespread but at varying levels; Federal agencies have taken some actions to respond to and lessen releases. Washington: United States Government Accountability Office, 2010

  5. Dasgupta P K. Perchlorate: An enigma for the new millennium. Analytica Chimica Acta, 2006, 567(1): 1–3

    Article  CAS  Google Scholar 

  6. Wang C, Lippincott L, Meng X. Feasibility and kinetics study on the direct bio-regeneration of perchlorate laden anion-exchange resin. Water Research, 2008, 42(18): 4619–4628

    Article  CAS  Google Scholar 

  7. Kirk A B. Environmental perchlorate: Why it matters. Analytica Chimica Acta, 2006, 567(1): 4–12

    Article  CAS  Google Scholar 

  8. Baier-Anderson C. Risk assessment, remedial decisions and the challenge to protect public health: The perchlorate case study. Analytica Chimica Acta, 2006, 567(1): 13–19

    Article  CAS  Google Scholar 

  9. Wang W, Gu B. New surface-enhanced Raman spectroscopy substrates via self-Assembly of silver nanoparticles for perchlorate detection in water. Applied Spectroscopy, 2005, 59(12): 1509–1515

    Article  CAS  Google Scholar 

  10. Mosier-Boss P A. Use of Raman spectroscopy to evaluate the selectivity of bifunctional anion exchange resins for perchlorate. Applied Spectroscopy, 2008, 62(2): 157–165

    Article  CAS  Google Scholar 

  11. Kumarathilaka P, Oze C, Indraratne S P, Vithanage M. Perchlorate as an emerging contaminant in soil, water and food. Chemosphere, 2016, 150: 667–677

    Article  CAS  Google Scholar 

  12. Public health goal for perchlorate in drinking water. Pesticide and environmental toxicology branch. California: Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 2015

  13. Wang W, Ruan C, Gu B. Development of gold–silica composite nanoparticle substrates for perchlorate detection by surfaceenhanced Raman spectroscopy. Analytica Chimica Acta, 2006, 567(1): 121–126

    Article  CAS  Google Scholar 

  14. Gu B, Ruan C, Wang W. Perchlorate detection at nanomolar concentrations by surface-enhanced Raman scattering. Applied Spectroscopy, 2009, 63(1): 98–102

    Article  CAS  Google Scholar 

  15. Mosier-Boss P A, Putnam M D. Detection of perchlorate using Ag/DMAH + SERS-active capture matrices. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2014, 133: 156–164

    Article  CAS  Google Scholar 

  16. Sharma B, Frontiera R R, Henry A I, Ringe E, van Duyne R P. SERS: Materials, applications, and the future. Materials Today, 2012, 15(1–2): 16–25

    Article  CAS  Google Scholar 

  17. Cheng H W, Luo J, Zhong C J. SERS nanoprobes for bioapplication. Frontiers of Chemical Science and Engineering, 2015, 9(4): 428–441

    Article  CAS  Google Scholar 

  18. Mosier-Boss P A, Lieberman S H. Detection of anions by normal Raman spectroscopy and surface-enhanced Raman spectroscopy of cationic-coated substrates. Applied Spectroscopy, 2003, 57(9): 1129–1137

    Article  CAS  Google Scholar 

  19. Gu B, Tio J, Wang W, Ku Y K, Dai S. Raman spectroscopic detection for perchlorate at low concentrations. Applied Spectroscopy, 2004, 58(6): 741–744

    Article  CAS  Google Scholar 

  20. Ruan C, Wang W, Gu B. Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles. Analytica Chimica Acta, 2006, 567(1): 114–120

    Article  CAS  Google Scholar 

  21. Tan S, Erol M, Sukhishvili S, Du H. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering. Langmuir, 2008, 24(9): 4765–4771

    Article  CAS  Google Scholar 

  22. Hao J, Xu Z, Han M J, Xu S, Meng X. Surface-enhanced Raman scattering analysis of perchlorate using silver nanofilms deposited on copper foils. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 366(1–3): 163–169

    Article  CAS  Google Scholar 

  23. Hao J, Han M J, Li J, Meng X. Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 2012, 377(1): 51–57

    Article  CAS  Google Scholar 

  24. Hao J, Han M J, Meng X, Weimer W, Wang Q K. Surface-enhanced Raman scattering of perchlorate on cationic-modified silver nanofilms—effect of inorganic anions. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 136(Part C): 1593–1599

    Article  CAS  Google Scholar 

  25. Xiao J, Zhang T, Li R, Meng Y, Wen W. Surface-enhanced Raman scattering for quantitative analysis of perchlorate using poly (diallyldimethylammonium chloride) capped gold nanoparticles. Applied Spectroscopy, 2012, 66(9): 1027–1033

    Article  CAS  Google Scholar 

  26. Stewart A, Murray S, Bell S E J. Simple preparation of positively charged silver nanoparticles for detection of anions by surfaceenhanced Raman spectroscopy. Analyst (London), 2015, 140(9): 2988–2994

    Article  CAS  Google Scholar 

  27. Zhu S, Zhang X, Cui J, Shi Y, Jiang X, Liu Z, Zhan J. Silver nanoplate-decorated copper wire for the on-site microextraction and detection of perchlorate using a portable Raman spectrometer. Analyst (London), 2015, 140(8): 2815–2822

    Article  CAS  Google Scholar 

  28. Nuntawong N, Eiamchai P, Limwichean S, Wong-ek B, Horprathum M, Patthanasettakul V, Leelapojanaporn A, Nakngoenthong S, Chindaudom P. Trace detection of perchlorate in industrial-grade emulsion explosive with portable surface-enhanced Raman spectroscopy. Forensic Science International, 2013, 233(1-3): 174–178

    Article  CAS  Google Scholar 

  29. Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews, 1999, 99(10): 2957–2976

    Article  CAS  Google Scholar 

  30. Halvorson R A, Vikesland P J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environmental Science & Technology, 2010, 44(20): 7749–7755

    Article  CAS  Google Scholar 

  31. Baker G A, Moore D S. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Analytical and Bioanalytical Chemistry, 2005, 382(8): 1751–1770

    Article  CAS  Google Scholar 

  32. Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Surfaceenhanced Raman scattering and biophysics. Journal of Physics Condensed Matter, 2002, 14(18): R597

    Article  CAS  Google Scholar 

  33. Wei H, Hossein Abtahi S M, Vikesland P J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environmental Science. Nano, 2015, 2(2): 120–135

    Article  CAS  Google Scholar 

  34. Alvarez-Puebla R A, Liz-Marzán L M. SERS detection of small inorganic molecules and ions. Angewandte Chemie International Edition, 2012, 51(45): 11214–11223

    Article  CAS  Google Scholar 

  35. Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997, 78(9): 1667–1670

    Article  CAS  Google Scholar 

  36. Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106

    Article  CAS  Google Scholar 

  37. Mulvihill M, Tao A, Benjauthrit K, Arnold J, Yang P. Surfaceenhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angewandte Chemie International Edition, 2008, 47(34): 6456–6460

    Article  CAS  Google Scholar 

  38. Han MJ, Hao J, Xu Z, Meng X. Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. Analytica Chimica Acta, 2011, 692(1–2): 96–102

    Article  CAS  Google Scholar 

  39. Xu Z, Hao J, Li F, Meng X. Surface-enhanced Raman spectroscopy of arsenate and arsenite using Ag nanofilm prepared by modified mirror reaction. Journal of Colloid and Interface Science, 2010, 347(1): 90–95

    Article  CAS  Google Scholar 

  40. Jia S, Li D, Fodjo E K, Xu H, Deng W, Wu Y, Wang Y. Simultaneous preconcentration and ultrasensitive on-site SERS detection of polycyclic aromatic hydrocarbons in seawater using hexanethiol-modified silver decorated graphene nanomaterials. Analytical Methods, 2016, 8(42): 7587–7596

    Article  CAS  Google Scholar 

  41. Zhang Y, Wang Z, Wu L, Pei Y, Chen P, Cui Y. Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst (London), 2014, 139(20): 5148–5154

    Article  CAS  Google Scholar 

  42. Alvarez-Puebla R A, Liz-Marzan L M. Environmental applications of plasmon assisted Raman scattering. Energy & Environmental Science, 2010, 3(8): 1011–1017

    Article  CAS  Google Scholar 

  43. Fan M, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 2011, 693(1–2): 7–25

    Article  CAS  Google Scholar 

  44. Sharma B, Fernanda Cardinal M, Kleinman S L, Greeneltch N G, Frontiera R R, Blaber M G, Schatz G C, van Duyne R P. Highperformance SERS substrates: Advances and challenges. MRS Bulletin, 2013, 38(8): 615–624

    Article  CAS  Google Scholar 

  45. Li D W, Zhai W L, Li Y T, Long Y T. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Mikrochimica Acta, 2014, 181(1–2): 23–43

    Article  CAS  Google Scholar 

  46. Hao J, Han M J, Xu Z, Li J, Meng X. Fabrication and evolution of multilayer silver nanofilms for surface-enhanced Raman scattering sensing of arsenate. Nanoscale Research Letters, 2011, 6(1): 263

    Article  Google Scholar 

  47. Chen C, Hao J, Zhu L, Yao Y, Meng X, Weimer W, Wang Q K. Direct two-phase interfacial self-assembly of aligned silver nanowire films for surface enhanced Raman scattering applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(43): 13496–13501

    Article  CAS  Google Scholar 

  48. Du J, Cui J, Jing C. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chemical Communications, 2014, 50(3): 347–349

    Article  CAS  Google Scholar 

  49. Fateixa S, Nogueira H I S, Trindade T. Hybrid nanostructures for SERS: Materials development and chemical detection. Physical Chemistry Chemical Physics, 2015, 17(33): 21046–21071

    Article  CAS  Google Scholar 

  50. Chen MC, Tsai S D, Chen MR, Ou S Y, Li WH, Lee K C. Effect of silver-nanoparticle aggregation on surface-enhanced Raman scattering from benzoic acid. Physical Review B: Condensed Matter and Materials Physics, 1995, 51(7): 4507–4515

    Article  CAS  Google Scholar 

  51. Dou X, Jung Y M, Cao Z Q, Ozaki Y. Surface-enhanced Raman scattering of biological molecules on metal colloid II: Effects of aggregation of gold colloid and comparison of effects of pH of glycine solutions between gold and silver colloids. Applied Spectroscopy, 1999, 53(11): 1440–1447

    Article  CAS  Google Scholar 

  52. Zou X, Dong S. Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. Journal of Physical Chemistry B, 2006, 110(43): 21545–21550

    Article  CAS  Google Scholar 

  53. Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: âFrom noble to transition metals and from rough surfaces to ordered nanostructures. Journal of Physical Chemistry B, 2002, 106(37): 9463–9483

    Article  CAS  Google Scholar 

  54. Hu J, Zhao B, Xu W, Fan Y, Li B, Ozaki Y. Simple method for preparing controllably aggregated silver particle films used as surface-enhanced Raman scattering active substrates. Langmuir, 2002, 18(18): 6839–6844

    Article  CAS  Google Scholar 

  55. Sackmann M, Materny A. Surface enhanced Raman scattering (SERS)—a quantitative analytical tool? Journal of Raman Spectroscopy, 2006, 37(1–3): 305–310

  56. Rajesh D, Mahendar M, Sunandana C S. Effect of etching on the optical, morphological properties of Ag thin films for SERS active substrates. Journal of Chemistry, 2013, 2013: 285431

    Article  Google Scholar 

  57. Zheng J, He L. Surface-enhanced Raman spectroscopy for the chemical analysis of food. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317–328

    Article  CAS  Google Scholar 

  58. Pang S, Yang T, He L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry, 2016, 85: 73–82

    Article  CAS  Google Scholar 

  59. Song C, Yang B, Yang Y, Wang L. SERS-based mercury ion detections: Principles, strategies and recent advances. Science China. Chemistry, 2016, 59(1): 16–29

    Article  CAS  Google Scholar 

  60. Shaban M, Galaly A R. Highly sensitive and selective in-situ SERS detection of Pb2+, Hg2+, and Cd2+ using nanoporous membrane functionalized with CNTs. Scientific Reports, 2016, 6: 25307

    Article  CAS  Google Scholar 

  61. Han D, Lim S Y, Kim B J, Piao L, Chung T D. Mercury(ii) detection by SERS based on a single gold microshell. Chemical Communications, 2010, 46(30): 5587–5589

    Article  CAS  Google Scholar 

  62. Wang Y, Irudayaraj J. A SERS DNAzyme biosensor for lead ion detection. Chemical Communications, 2011, 47(15): 4394–4396

    Article  CAS  Google Scholar 

  63. Ruan C, Luo W, Wang W, Gu B. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Analytica Chimica Acta, 2007, 605(1): 80–86

    Article  CAS  Google Scholar 

  64. Bhandari D, Wells S M, Retterer S T, Sepaniak M J. Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced Raman spectroscopy. Analytical Chemistry, 2009, 81(19): 8061–8067

    Article  CAS  Google Scholar 

  65. Li J, Chen L, Lou T, Wang Y. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. ACS Applied Materials & Interfaces, 2011, 3(10): 3936–3941

    Article  CAS  Google Scholar 

  66. Xiao J, Meng Y Y, Zhang P L, Wen W, Liu Z M, Zhang T. Quantitative analysis of chromate (CrVI) by normal Raman spectroscopy and surface-enhanced Raman spectroscopy using poly(diallyldimethylammonium) chloride-capped gold nanoparticles. Laser Physics, 2012, 22(10): 1481–1488

    Article  CAS  Google Scholar 

  67. Zhou W, Yin B C, Ye B C. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate. Biosensors & Bioelectronics, 2017, 87: 187–194

    Article  CAS  Google Scholar 

  68. Mosier-Boss P A, Putnam M D. Detection of hexavalent chromium using gold/4-(2-mercaptoethyl) pyridinium surface enhanced Raman scattering-active capture matrices. Analytica Chimica Acta, 2013, 801: 70–77

    Article  CAS  Google Scholar 

  69. Mosier-Boss P A, PutnamMD. The evaluation of two commercially available, portable Raman systems. Analytical Chemistry Insights. Analytical Chemistry Insights, 2013, 8: 83–97

    CAS  Google Scholar 

  70. Dieringer J A, McFarland A D, Shah N C, Stuart D A, Whitney A V, Yonzon C R, Young M A, Zhang X, van Duyne R P. Introductory lecture surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discussions, 2006, 132: 9–26

    Article  CAS  Google Scholar 

  71. Jia S, Li D, Fodjo E K, Xu H, Deng W, Wu Y, Wang Y. Simultaneous preconcentration and ultrasensitive on-site SERS detection of polycyclic aromatic hydrocarbons in seawater using hexanethiol-modified silver decorated graphene nanomaterials. Analytical Methods, 2016, 8(42): 7587–7596

    Article  CAS  Google Scholar 

  72. Gao P, Patterson M L, Tadayyoni M A, Weaver M J. Gold as a ubiquitous substrate for intense surface-enhanced Raman scattering. Langmuir, 1985, 1(1): 173–176

    Article  CAS  Google Scholar 

  73. Niaura G, Malinauskas A. Surface-enhanced Raman spectroscopy of ClO4–and SO4 2–anions adsorbed at a Cu electrode. Journal of the Chemical Society, Faraday Transactions, 1998, 94(15): 2205–2211

    Article  CAS  Google Scholar 

  74. Kania S, Holze R. Surface enhanced Raman spectroscopy of anions adsorbed on foreign metal modified gold electrodes. Surface Science, 1998, 408(1–3): 252–259

    Article  CAS  Google Scholar 

  75. Sant’Ana A C, Alves W A, Santos R H A, Ferreira A M D, Temperini M L A. The adsorption of 2,2':6',2''-terpyridine, 4'-(5-mercaptopentyl)-2,2':6',2''-terpyridinyl, and perchlorate on silver and copper surfaces monitored by SERS. Polyhedron, 2003, 22(13): 1673–1682

    Article  Google Scholar 

  76. Holze R. Preparation of gold electrodes for surface enhanced Raman spectroscopy SERS. Surface Science, 1988, 202(3): L612–L620

    Article  CAS  Google Scholar 

  77. Mosier-Boss P A, Lieberman S H. Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationiccoated, silver substrates. Applied Spectroscopy, 2000, 54(8): 1126–1135

    Article  CAS  Google Scholar 

  78. Zhou Q, Kim T. Review of microfluidic approaches for surfaceenhanced Raman scattering. Sensors and Actuators. B, Chemical, 2016, 227: 504–514

    Article  CAS  Google Scholar 

  79. Yogarajah N, Tsai S S H. Detection of trace arsenic in drinking water: Challenges and opportunities for microfluidics. Environmental Science: Water Research & Technology, 2015, 1(4): 426–447

    CAS  Google Scholar 

  80. Parisi J, Dong Q, Lei Y. In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing. RSC Advances, 2015, 5(19): 14081–14089

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Meng.

Additional information

Dr. Xiaoguang Meng is a professor at the Center for Environmental Systems in Stevens Institute of Technology, USA. He earned his PhD degree in Environmental Engineering from Syracuse University. His research is focused on environmental surface chemistry, development of chemical and physical processes for treatment of arsenic and heavy metals, removal and recovery of phosphate in wastewater, and SERS detection of environmental contaminants. He has published more than 80 papers in peer reviewed scientific journals, obtained four US patents, and edited a book. He developed an effective household filtration process and successfully demonstrated it in nearly hundreds of families in Bangladesh. He developed a nanocrystalline titanium dioxide adsorbent and the patented material has been used in filters for treatment of arsenic, lead and other heavy metals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Meng, X. Recent advances in SERS detection of perchlorate. Front. Chem. Sci. Eng. 11, 448–464 (2017). https://doi.org/10.1007/s11705-017-1611-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1611-9

Keywords

Navigation