Skip to main content
Log in

Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A sol-gel technique has been developed for the synthesis of a magnetite-silica-titania (Fe3O4-SiO2-TiO2) tertiary nanocomposite with improved photocatalytic properties based on the use of inexpensive titania and silica precursors. The exceptional photocatalytic activity of the resulting materials was demonstrated by using them to photocatalyze the degradation of methylene blue solution. The best formulation achieved 98% methylene blue degradation. An interesting feature of the present work was the ability to magnetically separate and reuse the catalyst. The efficiency of the catalyst remained high during two reuses. The synthesized nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultra-violet-visible spectroscopy, diffuse reflectance spectroscopy, and thermogravimetric analysis. XRD analysis revealed the formation of multicrystalline systems of cubic magnetite and anatase titania crystals. SEM and TEM characterization revealed well-developed and homo-geneously dispersed particles of size less than 15 nm. FTIR spectra confirmed the chemical interaction of titania and silica. It was further noticed that the optical properties of the prepared materials were dependent on the relative contents of their constituent metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang P, Shi Q, Shi Y, Clark K K, Stucky G D, Keller A A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. Journal of the American Chemical Society, 2008, 131(1): 182–188

    Article  Google Scholar 

  2. Yu K, Yang S, Liu C, Chen H, Li H, Sun C, Boyd S A. Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis. Environmental Science & Technology, 2012, 46(13): 7318–7326

    Article  CAS  Google Scholar 

  3. Ali I. New generation adsorbents for water treatment. Chemical Reviews, 2012, 112(10): 5073–5091

    Article  CAS  Google Scholar 

  4. Ahmed M A, El-Katori E E, Gharni Z H. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol-gel method. Journal of Alloys and Compounds, 2013, 553: 19–29

    Article  CAS  Google Scholar 

  5. Tiwari J N, Mahesh K, Le N H, Kemp K C, Timilsina R, Tiwari R N, Kim K S. Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 2013, 56: 173–182

    Article  CAS  Google Scholar 

  6. Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 2009, 109(12): 6541–6569

    Article  CAS  Google Scholar 

  7. Ni M, Leung M K H, Leung D Y C, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425

    Article  CAS  Google Scholar 

  8. Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959

    Article  CAS  Google Scholar 

  9. Roy P, Berger S, Schmuki P. TiO2 nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 2011, 50 (13): 2904–2939

    Article  CAS  Google Scholar 

  10. Tobaldi D M, Pullar R C, Gualtieri F, Seabra M P, Labrincha J A. Sol-gel synthesis, characterisation and photocatalytic activity of pure, W-, Ag- and W/Ag co-doped TiO2 nanopowders. Chemical Engineering Journal, 2013, 214: 364–375

    Article  CAS  Google Scholar 

  11. Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. Journal of Physical Chemistry B, 2000, 104(19): 4815–4820

    Article  CAS  Google Scholar 

  12. Wu M, Liu J, Jin J, Wang C, Huang S, Deng Z, Li Y, Su B L. Probing significant light absorption enhancement of titania inverse opal films for highly exalted photocatalytic degradation of dye pollutants. Applied Catalysis B: Environmental, 2014, 150–151: 411–420

    Article  Google Scholar 

  13. Yuan C, Wu H B, Xie Y, Lou X W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angewandte Chemie International Edition, 2014, 53(6): 1488–1504

    Article  CAS  Google Scholar 

  14. Khan M M, Lee J, Cho M H. Au@ TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1584–1590

    Article  CAS  Google Scholar 

  15. Gaya U I, Abdullah A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology A Chemistry, 2008, 9(1): 1–12

    Article  CAS  Google Scholar 

  16. Llano B, Hidalgo M C, Rios L A, Navio J A. Effect of the type of acid used in the synthesis of titania-silica mixed oxides on their photocatalytic properties. Applied Catalysis B: Environmental, 2014, 150–151: 389–395

    Article  Google Scholar 

  17. Gawande M B, Pandey R K, Jayaram R V. Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catalysis Science & Technology, 2012, 2(6): 1113–1125

    Article  CAS  Google Scholar 

  18. Yan X M, Mei P, Xiong L, Gao L, Yang Q, Gong L. Mesoporous titania-silica-polyoxometalate nanocomposite materials for catalytic oxidation desulfurization of fuel oil. Catalysis Science & Technology, 2013, 3(8): 1985–1992

    Article  CAS  Google Scholar 

  19. Guin A K, Nayak S K, Rout T K, Bandyopadhyay N, Sengupta D K. Corrosion behavior of nanohybrid titania-silica composite coating on phosphated steel sheet. Journal of Coatings Technology and Research, 2012, 9(1): 97–106

    Article  CAS  Google Scholar 

  20. Yu X, Liu S, Yu J. Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties. Applied Catalysis B: Environmental, 2011, 104(1-2): 12–20

    Article  CAS  Google Scholar 

  21. Cheng J P, Ma R, Li M, Wu J S, Liu F, Zhang X B. Anatase nanocrystals coating on silica-coated magnetite: Role of polyacrylic acid treatment and its photocatalytic properties. Chemical Engineering Journal, 2012, 210: 80–86

    Article  CAS  Google Scholar 

  22. Abbas N, Shao G N, Haider M S, Imran S M, Park S S, Kim H T. Sol-gel synthesis of TiO2-Fe2O3 systems: Effects of Fe2O3 content and their photocatalytic properties. Journal of Industrial and Engineering Chemistry, 2016

    Google Scholar 

  23. Kokate M, Garadkar K, Gole A. One pot synthesis of magnetitesilica nanocomposites: Applications as tags, entrapment matrix and in water purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(6): 2022–2029

    Article  CAS  Google Scholar 

  24. Costa A L, Ballarin B, Spegni A, Casoli F, Gardini D. Synthesis of nanostructured magnetic photocatalyst by colloidal approach and spray-drying technique. Journal of Colloid and Interface Science, 2012, 388(1): 31–39

    Article  CAS  Google Scholar 

  25. Zhu J, Xie J, Chen M, Jiang D,Wu D. Low temperature synthesis of anatase rare earth doped titania-silica photocatalyst and its photocatalytic activity under solar-light. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 355(1-3): 178–182

    Article  CAS  Google Scholar 

  26. Harraz F A, Abdel-Salam O E, Mostafa A A, Mohamed R M, Hanafy M. Rapid synthesis of titania-silica nanoparticles photocatalyst by a modified sol-gel method for cyanide degradation and heavy metals removal. Journal of Alloys and Compounds, 2013, 551: 1–7

    Article  CAS  Google Scholar 

  27. Cong Y, Li Z, Zhang Y, Wang Q, Xu Q. Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol. Chemical Engineering Journal, 2012, 191: 356–363

    Article  CAS  Google Scholar 

  28. Patra A K, Dutta A, Bhaumik A. Highly ordered mesoporous TiO2- Fe2O3 mixed oxide synthesized by sol-gel pathway: An efficient and reusable heterogeneous catalyst for dehalogenation reaction. ACS Applied Materials & Interfaces, 2012, 4(9): 5022–5028

    Article  CAS  Google Scholar 

  29. Abbas M, Rao B P, Reddy V, Kim C. Fe3O4/TiO2 core/shell nanocubes: Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceramics International, 2014, 40(7): 11177–11186

    Article  CAS  Google Scholar 

  30. Wu W, Xiao X, Zhang S, Ren F, Jiang C. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue. Nanoscale Research Letters, 2011, 6(1): 533

    Article  Google Scholar 

  31. Wang C, Yin L, Zhang L, Kang L, Wang X, Gao R. Magnetic (γ-Fe2O3@SiO2)n@TiO2 functional hybrid nanoparticles with actived photocatalytic ability. Journal of Physical Chemistry C, 2009, 113 (10): 4008–4011

    Article  CAS  Google Scholar 

  32. Paušová Š, Krýsa J, Jirkovský J, Prevot V, Mailhot G. Preparation of TiO2-SiO2 composite photocatalysts for environmental applications. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(8): 1129–1135

    Article  Google Scholar 

  33. Tanemura S, Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N. Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering. Applied Surface Science, 2003, 212–213: 654–660

    Article  Google Scholar 

  34. Marfunin A S. Physics of Minerals and Inorganic Materials: An Introduction. Berlin: Springer-Verlag, 1979

    Book  Google Scholar 

  35. Yazdani F, Edrissi M. Effect of pressure on the size of magnetite nanoparticles in the coprecipitation synthesis. Materials Science and Engineering B, 2010, 171(1-3): 86–89

    Article  CAS  Google Scholar 

  36. Bickley R I, Gonzalez-Carreno T, Palmisano L. A study of the interaction between iron(III) oxide and titanium(IV) oxide at elevated temperatures. Materials Chemistry and Physics, 1991, 29 (1–4): 475–487

    Article  CAS  Google Scholar 

  37. Karthikeyan K, Kalpana D, Amaresh S, Lee Y S. Microwave synthesis of graphene/magnetite composite electrode material for symmetric supercapacitor with superior rate performance. RSC Advances, 2012, 2(32): 12322–12328

    Article  CAS  Google Scholar 

  38. Ye Y, Kuai L, Geng B. A template-free route to a Fe3O4-Co3O4 yolk-shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media. Journal of Materials Chemistry, 2012, 22 (36): 19132–19138

    Article  CAS  Google Scholar 

  39. Tian Y, Yu B, Li X, Li K. Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. Journal of Materials Chemistry, 2011, 21(8): 2476–2481

    Article  CAS  Google Scholar 

  40. Khataee A, Taseidifar M, Khorram S, Sheydaei M, Joo S W. Preparation of nanostructured magnetite with plasma for degradation of a cationic textile dye by the heterogeneous Fenton process. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 132–139

    Article  CAS  Google Scholar 

  41. Yang H, Lu R,Wang L. Study of preparation and properties on solid superacid sulfated titania-silica nanomaterials. Materials Letters, 2003, 57(5–6): 1190–1196

    Article  CAS  Google Scholar 

  42. Nilchi A, Janitabar-Darzi S, Mahjoub A R, Rasouli-Garmarodi S. New TiO2/SiO2 nanocomposites—phase transformations and photocatalytic studies. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 361(1–3): 25–30

    Article  CAS  Google Scholar 

  43. Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry, 1994, 98(51): 13669–13679

    Article  Google Scholar 

  44. Feng Y, Ji X, Duan J, Zhu J, Jiang J, Ding H, Meng G, Ding R, Liu J, Hu A, Huang X. Synthesis of ZnO@TiO2 core-shell long nanowire arrays and their application on dye-sensitized solar cells. Journal of Solid State Chemistry, 2012, 190(0): 303–308

    Article  CAS  Google Scholar 

  45. Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi. B, Basic Research, 1966, 15(2): 627–637

    CAS  Google Scholar 

  46. Gutiérrez O Y, Fuentes G A, Salcedo C, Klimova T. SBA-15 supports modified by Ti and Zr grafting for NiMo hydrodesulfurization catalysts. Catalysis Today, 2006, 116(4): 485–497

    Article  Google Scholar 

  47. Zeng Y, Hao R, Xing B, Hou Y, Xu Z. One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications, 2010, 46(22): 3920–3922

    Article  CAS  Google Scholar 

  48. Peng L, Xie T, Lu Y, Fan H, Wang D. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Physical Chemistry Chemical Physics, 2010, 12(28): 8033–8041

    Article  CAS  Google Scholar 

  49. Shao G N, Hilonga A, Kim Y N, Kim J K, Elineema G, Quang D V, Jeon S J, Kim H T. Peptization technique in the synthesis of titaniasilica composites and their photocatalytic properties. Chemical Engineering Journal, 2012, 198: 122–129

    Article  Google Scholar 

  50. Shao G N, Hilonga A, Jeon S J, Lee J E, Elineema G, Quang D V, Kim J K, Kim H T. Influence of titania content on the mesostructure of titania-silica composites and their photocatalytic activity. Powder Technology, 2013, 233: 123–130

    Article  CAS  Google Scholar 

  51. Shao G N, Imran S M, Jeon S J, Engole M, Abbas N, Haider M S, Kang S J, Kim H T. Sol-gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue. Powder Technology, 2014, 258: 99–109

    Article  CAS  Google Scholar 

  52. Kuo W S, Ho P H. Solar photocatalytic decolorization of methylene blue in water. Chemosphere, 2001, 45(1): 77–83

    Article  CAS  Google Scholar 

  53. Zhang Y, Gan H, Zhang G. A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chemical Engineering Journal, 2011, 172(2): 936–943

    Article  CAS  Google Scholar 

  54. López A, Acosta D, Martínez A I, Santiago J. Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity. Powder Technology, 2010, 202(1): 111–117

    Article  Google Scholar 

  55. Yang J, Zhang X, Li B, Liu H, Sun P, Wang C, Wang L, Liu Y. Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2014, 584(0): 180–184

    Article  CAS  Google Scholar 

  56. Shao G N, Engole M, Imran S M, Jeon S J, Kim H T. Sol-gel synthesis of photoactive kaolinite-titania: Effect of the preparation method and their photocatalytic properties. Applied Surface Science, 2015, 331: 98–107

    Article  CAS  Google Scholar 

  57. Jumeri F A, Lim H N, Ariffin S N, Huang N M, Teo P S, Fatin S O, Chia C H, Harrison I. Microwave synthesis of magnetically separable ZnFe2O4-reduced graphene oxide for wastewater treatment. Ceramics International, 2014, 40(5): 7057–7065

    Article  CAS  Google Scholar 

  58. Anandan S, Sivasankar T, Lana-Villarreal T. Synthesis of TiO2/WO3 nanoparticles via sonochemical approach for the photocatalytic degradation of methylene blue under visible light illumination. Ultrasonics Sonochemistry, 2014, 21(6): 1964–1968

    Article  CAS  Google Scholar 

  59. Chauhan R, Kumar A, Pal Chaudhary R. Photocatalytic degradation of methylene blue with Cu doped ZnS nanoparticles. Journal of Luminescence, 2014, 145: 6–12

    Article  CAS  Google Scholar 

  60. Seftel E M, Niarchos M, Mitropoulos C, Mertens M, Vansant E F, Cool P. Photocatalytic removal of phenol and methylene-blue in aqueous media using TiO2@LDH clay nanocomposites. Catalysis Today, 2015, 252: 120–127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Taik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, N., Shao, G.N., Imran, S.M. et al. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse. Front. Chem. Sci. Eng. 10, 405–416 (2016). https://doi.org/10.1007/s11705-016-1579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1579-x

Keywords

Navigation