Skip to main content
Log in

CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the comethanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and highresolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu X, Gu F, Liu Q, Gao J, Liu Y, Li H, Jia L, Xu G, Zhong Z, Su F. VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation. Fuel Processing Technology, 2015, 135: 34–46

    Article  CAS  Google Scholar 

  2. Liu H, Zou X, Wang X, Lu X, Ding W. Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen. Journal of Natural Gas Chemistry, 2012, 21(6): 703–707

    Article  CAS  Google Scholar 

  3. Ocampo F, Louis B, Kiwi-Minsker L, Roger A. Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1–x O2 catalysts for carbon dioxide methanation. Applied Catalysis A, General, 2011, 392(1-2): 36–44

    Article  CAS  Google Scholar 

  4. Cai M, Wen J, Chu W, Cheng X, Li Z. Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts: Effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier. Journal of Natural Gas Chemistry, 2011, 20(3): 318–324

    Article  CAS  Google Scholar 

  5. Büchel R, Baiker A, Pratsinis S. Effect of Ba and K addition and controlled spatial deposition of Rh in Rh/Al2O3 catalysts for CO2 hydrogenation. Applied Catalysis A, General, 2014, 477: 93–101

    Article  Google Scholar 

  6. Li L, Wei S, Xu G. Influence of second metal on Ni-based catalysts preparated by CO-preciptation method for methanation on of carbon dioxide. Natural Gas Chemical Industry, 2004, 29: 27–31 (in Chinese)

    Google Scholar 

  7. Guo C, Wu Y, Qin H, Zhang J. CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study. Fuel Processing Technology, 2014, 124: 61–69

    Article  CAS  Google Scholar 

  8. Lin X, Yang K, Si R, Chen X, Dai W, Fu X. Photo-assisted catalytic methanation of CO in H2-rich stream over Ru/TiO2. Applied Catalysis B: Environmental, 2014, 147: 585–591

    Article  CAS  Google Scholar 

  9. Urasaki K, Tanpo Y, Nagashima Y, Kikuchi R, Satokawa S. Effects of preparation conditions of Ni/TiO2 catalysts for selective CO methanation in the reformate gas. Applied Catalysis A, General, 2013, 452: 174–178

    Article  CAS  Google Scholar 

  10. Hwang S, Lee J, Hong U, Baik J, Koh D, Lim H, Song I. Methanation of carbon dioxide over mesoporous Ni-Fe-Ru-Al2O3 xerogel catalysts: Effect of ruthenium content. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 698–703

    Article  CAS  Google Scholar 

  11. Lu H, Yang X, Gao G, Wang K, Shi Q, Wang J, Han C, Liu J, Tong M, Liang X, Li C. Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation. International Journal of Hydrogen Energy, 2014, 39(33): 18894–18907

    Article  CAS  Google Scholar 

  12. Gao J, Jia C, Li J, Zhang M, Gu F, Xu G, Zhong Z, Su F. for CO methanation: Effect of Al2O3 supports calcined at different temperatures. Journal of Energy Chemistry, 2013, 22(6): 919–927

    Article  CAS  Google Scholar 

  13. Garbarino G, Valsamakis I, Riani P, Busca G. On the consistency of results arising from different techniques concerning the nature of supported metal oxide (nano)particles. The case of NiO/Al2O3. Catalysis Communications, 2014, 51: 37–41

    Article  CAS  Google Scholar 

  14. Zhen W, Li B, Lu G, Ma J. Enhancing catalytic activity and stability for CO2 methanation on Ni-Ru/gamma-Al2O3 via modulating impregnation sequence and controlling surface active species. RSC Advances, 2014, 4(32): 16472–16479

    Article  CAS  Google Scholar 

  15. Hwang S, Hong U, Lee J, Seo J, Baik J, Koh D, Lim H, Song I. Methanation of carbon dioxide over mesoporous Ni-Fe-Al2O3 catalysts prepared by a coprecipitation method: Effect of precipitation agent. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 2016–2021

    Article  CAS  Google Scholar 

  16. Zhou L, Wang Q, Ma L, Chen J, Ma J, Zi Z. CeO2 Promoted mesoporous Ni/gamma-Al2O3 catalyst and its reaction conditions for CO2 methanation. Catalysis Letters, 2015, 145(2): 612–619

    Article  CAS  Google Scholar 

  17. Hwang S, Lee J, Hong U, Jung J, Koh D, Lim H, Byun C, Song I. Hydrogenation of carbon monoxide to methane over mesoporous nickel-M-alumina (M = Fe, Ni, Co, Ce, and La) xerogel catalysts. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 243–248

    Article  CAS  Google Scholar 

  18. Liu Q, Gao J, Zhang M, Li H, Gu F, Xu G, Zhong Z, Su F. Highly active and stable Ni/γ-Al2O3 catalysts selectively deposited with CeO2 for CO methanation dagger. RSC Advances, 2014, 4(31): 16094–16103

    Article  CAS  Google Scholar 

  19. Zeng Y, Ma H, Zhang H, Ying W, Fang D. Highly efficient NiAl2O4-free Ni/γ-Al2O3 catalysts prepared by solution combustion method for CO methanation. Fuel, 2014, 137: 155–163

    Article  CAS  Google Scholar 

  20. Lohitharn N, Goodwin J Jr. Impact of Cr, Mn and Zr addition on Fe Fischer-Tropsch synthesis catalysis: Investigation at the active site level using SSITKA. Journal of Catalysis, 2008, 257(1): 142–151

    Article  CAS  Google Scholar 

  21. Jiang Q. The methanation of carbon dioxide on supported nickel catalyst. Natural Gas Chemical Industry, 2000, 25: 9–14 (in Chinese)

    CAS  Google Scholar 

  22. Wang C, Gong J. Study on Ni-Mn-based catalysts for methanation of carbon dioxide. Natural Gas Chemical Industry, 2011, 36: 4–6 (in Chinese)

    CAS  Google Scholar 

  23. Gao X, Wang Y, Li H, Zhao Y. Effect of mnaganese promoter on the catalystic performance of Ni/γ-Al2O3 catalyst for CO2 metnanation. Journal of Molecular Catalysis (China), 2011, 25: 49–54

    CAS  Google Scholar 

  24. Zhao A, Ying W, Zhang H, Ma H, Fang D. Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter. Journal of Natural Gas Chemistry, 2012, 21(2): 170–177 (in Chinese)

    Article  CAS  Google Scholar 

  25. Liu D, Quek X, Cheo W, Lau R, Borgna A, Yang Y. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metalsupport interaction. Journal of Catalysis, 2009, 266(2): 380–390

    Article  CAS  Google Scholar 

  26. Yang C, Yang W, Ling F, Fan F. Determination of metal dispersion on supported metal catalyst surface. Chemical Industry and Engineering Progress, 2010, 29(8): 1468–1473

    CAS  Google Scholar 

  27. Velu S, Gangwal S. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption. Solid State Ionics, 2006, 177(7-8): 803–811

    Article  CAS  Google Scholar 

  28. Zamani A, Ali R, Bakar W. The investigation of Ru/Mn/Cu-Al2O3 oxide catalysts for CO2/H2 methanation in natural gas. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(1): 143–152

    Article  CAS  Google Scholar 

  29. Qin H, Guo C, Wu Y, Zhang J. Effect of La2O3 promoter on NiO/Al2O3 catalyst in CO methanation. Korean Journal of Chemical Engineering, 2014, 31(7): 1168–1173

    Article  CAS  Google Scholar 

  30. Bai X, Wang S, Sun T, Wang S. The sintering of Ni/Al2O3 methanation catalyst for substitute natural gas production. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112(2): 437–451

    Article  CAS  Google Scholar 

  31. Razzaq R, Zhu H, Jiang L, Muhammad U, Li C, Zhang S. Catalytic methanation of CO and CO2 in coke oven gas over Ni-Co/ZrO2-CeO2. Industrial & Engineering Chemistry Research, 2013, 52(6): 2247–2256

    Article  CAS  Google Scholar 

  32. Pan Q, Peng J, Sun T, Wang S, Wang S. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catalysis Communications, 2014, 45: 74–78

    Article  Google Scholar 

  33. Habazaki H, Yamasaki M, Zhang B, Kawashima A, Kohno S, Takai T, Hashimoto K. Co-methanation of carbon monoxide and carbon dioxide on supported nickel and cobalt catalysts prepared from amorphous alloys. Applied Catalysis A, General, 1998, 172(1): 131–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Li, Z. & Bian, L. CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts. Front. Chem. Sci. Eng. 10, 273–280 (2016). https://doi.org/10.1007/s11705-016-1563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1563-5

Keywords

Navigation