Skip to main content
Log in

Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

We report a process of selective conversion of microcrystalline cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. A 58.1% yield of hexitols and a 71.0% conversion of cellulose were achieved over Ru/SZSi(100:15)-773 catalyst at 443 K. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), BET, thermogravimetric analysis and pyridine adsorption Fourier transform infrared spectroscopy (FTIR). XRD results indicated that the sulfated catalysts were pure tetragonal phase of ZrO2 when calcined at 773 K. Monoclinic zirconia appeared at the calcination temperature of 873 K, and the content of monoclinic phase increased with the elevating temperature. Compared with sulfated zirconia catalyst, sulfated silica-zirconia catalysts possessed a higher ratio of Brønsted to Lewis on the surface of catalysts, as shown from pyridine adsorption FTIR results. The reaction results indicated that the tetragonal zirconia, which is necessary for the formation of superacidity, was the active phase to cellulose conversion. The higher amounts of Brønsted acid sites can remarkably accelerate the cellulose depolymerization and promote side reactions that convert C5–C6 alcohols into the unknown soluble degradation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dhepe P L, Fukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem, 2008, 1(12): 969–975

    Article  CAS  Google Scholar 

  2. Yang P F, Kobayashi H, Fukuoka A. Recent developments in the catalytic conversion of cellulose into valuable chemicals. Chinese Journal of Catalysis, 2011, 32(5): 716–722

    Article  CAS  Google Scholar 

  3. Van de Vyver S, Geboers J, Jacobs P A, Sels B F. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3(1): 82–94

    Article  Google Scholar 

  4. Luo C, Wang S, Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angewandte Chemie International Edition, 2007, 119(46): 7780–7783

    Article  Google Scholar 

  5. Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angewandte Chemie International Edition, 2008, 47(44): 8510–8513

    Article  CAS  Google Scholar 

  6. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chemistry, 2010, 12(6): 972–978

    Article  CAS  Google Scholar 

  7. Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chemical Communications, 2011, 47(19): 5590–5592

    Article  CAS  Google Scholar 

  8. Rinaldi R, Palkovits R, Schuth F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angewandte Chemie International Edition, 2008, 47(42): 8047–8050

    Article  CAS  Google Scholar 

  9. Li C Z, Zhao Z K. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis, 2007, 349(11–12): 1847–1850

    Article  CAS  Google Scholar 

  10. Ignatyev I A, Doorslaer C V, Mertens P G, Binnemans K, Vos D E. Reductive splitting of cellulose in the ionic liquid 1-butyl-3- methylimidazolium chloride. ChemSusChem, 2010, 3(1): 91–96

    Article  CAS  Google Scholar 

  11. Onda A, Ochi T, Yanagisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 2008, 10 (10): 1033–1037

    Article  CAS  Google Scholar 

  12. Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental, 2011, 105(1–2): 171–181

    Article  CAS  Google Scholar 

  13. Pang J F, Wang A Q, Zheng M Y, Zhang T. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications, 2010, 46(37): 6935–6937

    Article  CAS  Google Scholar 

  14. Cabiac A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N. Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A, 2011, 402(1–2): 1–10

    Article  CAS  Google Scholar 

  15. Kobayashi H, Ito Y, Komaanoya T, Hosaka Y, Dhepe P L, Kasai K, Hara K, Fukuoka A. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chemistry, 2011, 13(2): 326–333

    Article  CAS  Google Scholar 

  16. Fukuoka A, Dhepe P L. Catalytic conversion of cellulose into sugar alcohols. Angewandte Chemie International Edition, 2006, 45(31): 5161–5163

    Article  CAS  Google Scholar 

  17. Deng WP, Tan X S, Fang WH, Zhang Q H,Wang Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catalysis Letters, 2009, 133(1–2): 167–174

    Article  CAS  Google Scholar 

  18. Han J W, Lee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catalysis Communications, 2012, 19: 115–118

    Article  CAS  Google Scholar 

  19. Cutrufello M G, Diebold U, Gonzalez R C. Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts. Catalysis Letters, 2005, 101(1–2): 5–13

    Article  CAS  Google Scholar 

  20. Li X B, Nagaoka K, Simon L J, Olindo R, Lercher J A. Influence of calcination procedure on the catalytic property of sulfated zirconia. Catalysis Letters, 2007, 113(1–2): 34–40

    Article  CAS  Google Scholar 

  21. Zhao E, Isaev Y, Sklyarov A, Fripiat J J. Acid centers in sulfated, phosphated and/or aluminated zirconias. Catalysis Letters, 1999, 60 (4): 173–181

    Article  CAS  Google Scholar 

  22. Barthos R, Lonyi F, Engelhardt J, Valyon J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides. Topics in Catalysis, 2000, 10(1–2): 79–87

    Article  CAS  Google Scholar 

  23. Chen X R, Ju Y H, Mou C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. Journal of Physical Chemistry C, 2007, 111(50): 18731–18737

    Article  CAS  Google Scholar 

  24. Oh J, Dash S, Lee H. Selective conversion of glycerol to 1,3- propanediol using Pt-sulfated zirconia. Green Chemistry, 2011, 13 (8): 2004–2007

    Article  CAS  Google Scholar 

  25. Wang Y, Ma J H, Liang D, Zhou M M, Li F X, Li R F. Lewis and Brønsted acids in super-acid catalyst SO2– 4 /ZrO2-SiO2. Journal of Materials Science, 2009, 44(24): 6736–6740

    Article  CAS  Google Scholar 

  26. Hammache S, Goodwin J G Jr. Characteristics of the active sites on sulfated zirconia for n-butane isomerization. Journal of Catalysis, 2003, 218(2): 258–266

    Article  CAS  Google Scholar 

  27. Li X B, Nagaoka K, Lercher J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137

    Article  CAS  Google Scholar 

  28. Deutschmann O, Knözinger H, Kochloefl K, Turek T. Heterogeneous catalysis and solid catalysts. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, 2009, 38–39

    Google Scholar 

  29. Li X B, Nagaoka K, Lercher J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227(1): 130–137

    Article  CAS  Google Scholar 

  30. Suwannakarn K, Lotero E, Goodwin J G Jr, Lu C. Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. Journal of Catalysis, 2008, 255(2): 279–286

    Article  CAS  Google Scholar 

  31. Thitsartarn W, Kawi S. Transesterification of oil by sulfated Zrsupported mesoporous silica. Industrial & Engineering Chemistry Research, 2011, 50(13): 7857–7865

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Wang, H., Niu, Y. et al. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. Front. Chem. Sci. Eng. 9, 461–466 (2015). https://doi.org/10.1007/s11705-015-1543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1543-1

Keywords

Navigation