Skip to main content
Log in

Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Over the past few decades, cell penetrating peptides (CPPs) have become an important class of drug carriers for small molecules, proteins, genes and nanoparticle systems. CPPs represent a very diverse set of short peptide sequences (10–30 amino acids), generally classified as cationic or amphipathic, with various mechanisms in cellular internalization. In this review, a more comprehensive assessment of the chemical structural characteristics, including net cationic charge, hydrophobicity and helicity was assembled for a large set of commonly used CPPs, and compared to results from numerous in vivo drug delivery studies. This detailed information can aid in the design and selection of effective CPPs for use as transport carriers in the delivery of different types of drug for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat transactivator protein. Cell, 1988, 55(6): 1179–1188

    Article  CAS  Google Scholar 

  2. Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6): 1189–1193

    Article  CAS  Google Scholar 

  3. Patel L N, Zaro J L, Shen W C. Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 2007, 24(11): 1977–1992

    Article  CAS  Google Scholar 

  4. Vasconcelos L, Madani F, Arukuusk P, Parnaste L, Graslund A, Langel U. Effects of cargo molecules on membrane perturbation caused by transportan10 based cell-penetrating peptides. Biochimica et Biophysica Acta, 2014, 1838(12): 3118–3129

    Article  CAS  Google Scholar 

  5. Grdisa M. The delivery of biologically active (therapeutic) peptides and proteins into cells. Current Medicinal Chemistry, 2011, 18(9): 1373–1379

    Article  CAS  Google Scholar 

  6. Dietz G P, Bahr M. Delivery of bioactive molecules into the cell: The Trojan horse approach. Molecular and Cellular Neurosciences, 2004, 27(2): 85–131

    Article  CAS  Google Scholar 

  7. Copolovici D M, Langel K, Eriste E, Langel U. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano, 2014, 8 (3): 1972–1994

    Article  CAS  Google Scholar 

  8. Bechinger B, Aisenbrey C. The polymorphic nature of membraneactive peptides from biophysical and structural investigations. Current Protein & Peptide Science, 2012, 13(7): 602–610

    Article  CAS  Google Scholar 

  9. El-Andaloussi S, Holm T, Langel U. Cell-penetrating peptides: Mechanisms and applications. Current Pharmaceutical Design, 2005, 11(28): 3597–3611

    Article  CAS  Google Scholar 

  10. Walrant A, Bechara C, Alves I D, Sagan S. Molecular partners for interaction and cell internalization of cell-penetrating peptides: How identical are they? Nanomedicine (London), 2012, 7(1): 133–143

    Article  CAS  Google Scholar 

  11. Lewis H D, Husain A, Donnelly R J, Barlos D, Riaz S, Ginjupalli K, Shodeinde A, Barton B E. Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines. BMC Biotechnology, 2010, 10(1): 79

    Article  CAS  Google Scholar 

  12. Ragin A D, Morgan R A, Chmielewski J. Cellular import mediated by nuclear localization signal peptide sequences. Chemistry & Biology, 2002, 9(8): 943–948

    Article  CAS  Google Scholar 

  13. Sadler K, Eom K D, Yang J L, Dimitrova Y, Tam J P. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry, 2002, 41(48): 14150–14157

    Article  CAS  Google Scholar 

  14. Jha D, Mishra R, Gottschalk S, Wiesmuller K H, Ugurbil K, Maier M E, Engelmann J. CyLoP-1: A novel cysteine-rich cellpenetrating peptide for cytosolic delivery of cargoes. Bioconjugate Chemistry, 2011, 22(3): 319–328

    Article  CAS  Google Scholar 

  15. De Coupade C, Fittipaldi A, Chagnas V, Michel M, Carlier S, Tasciotti E, Darmon A, Ravel D, Kearsey J, Giacca M, Cailler F. Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochemical Journal, 2005, 390(2): 407–418

    Article  CAS  Google Scholar 

  16. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. Journal of Biological Chemistry, 2001, 276(8): 5836–5858

    Article  CAS  Google Scholar 

  17. Nakase I, Hirose H, Tanaka G, Tadokoro A, Kobayashi S, Takeuchi T, Futaki S. Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. Molecular Therapy, 2009, 17(11): 1868–1876

    Article  CAS  Google Scholar 

  18. Langedijk J P, Olijhoek T, Schut D, Autar R, Meloen R H. New transport peptides broaden the horizon of applications for peptidic pharmaceuticals. Molecular Diversity, 2004, 8(2): 101–111

    Article  CAS  Google Scholar 

  19. Bong D T, Steinem C, Janshoff A, Johnson J E, Reza Ghadiri M. A highly membrane-active peptide in Flock House virus: Implications for the mechanism of nodavirus infection. Chemistry & Biology, 1999, 6(7): 473–481

    Article  CAS  Google Scholar 

  20. Bertrand J R, Malvy C, Auguste T, Toth G K, Kiss-Ivankovits O, Illyes E, Hollosi M, Bottka S, Laczko I. Synthesis and studies on cell-penetrating peptides. Bioconjugate Chemistry, 2009, 20(7): 1307–1314

    Article  CAS  Google Scholar 

  21. Trehin R, Krauss U, Beck-Sickinger A G, Merkle H P, Nielsen H M. Cellular uptake but low permeation of human calcitoninderived cell penetrating peptides and Tat(47-57) through welldifferentiated epithelial models. Pharmaceutical Research, 2004, 21(7): 1248–1256

    Article  CAS  Google Scholar 

  22. Cascales L, Henriques S T, Kerr M C, Huang Y H, Sweet M J, Daly N L, Craik D J. Identification and characterization of a new family of cell-penetrating peptides: Cyclic cell-penetrating peptides. Journal of Biological Chemistry, 2011, 286(42): 36932–36943

    Article  CAS  Google Scholar 

  23. Thoren P E, Persson D, Isakson P, Goksor M, Onfelt A, Norden B. Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochemical and Biophysical Research Communications, 2003, 307(1): 100–107

    Article  CAS  Google Scholar 

  24. Fischer P M, Zhelev N Z, Wang S, Melville J E, Fahraeus R, Lane D P. Structure-activity relationship of truncated and substituted analogues of the intracellular delivery vector Penetratin. Journal of Peptide Research, 2000, 55(2): 163–172

    Article  CAS  Google Scholar 

  25. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. Journal of Biological Chemistry, 1996, 271(30): 18188–18193

    Article  CAS  Google Scholar 

  26. El-Andaloussi S, Johansson H J, Holm T, Langel U. A novel cellpenetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Molecular Therapy, 2007, 15(10): 1820–1826

    Article  CAS  Google Scholar 

  27. Duchardt F, Ruttekolk I R, VerdurmenWP, Lortat-Jacob H, Burck J, Hufnagel H, Fischer R, van den Heuvel M, Lowik D W, Vuister G W, Ulrich A, de Waard M, Brock R. A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. Journal of Biological Chemistry, 2009, 284 (52): 36099–36108

    Article  CAS  Google Scholar 

  28. Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M, Melzig M, Bienert M. Structural requirements for cellular uptake of alpha-helical amphipathic peptides. Journal of Peptide Science, 1999, 5(4): 185–194

    Article  CAS  Google Scholar 

  29. Jones S W, Christison R, Bundell K, Voyce C J, Brockbank S M, Newham P, Lindsay M A. Characterisation of cell-penetrating peptide-mediated peptide delivery. British Journal of Pharmacology, 2005, 145(8): 1093–1102

    Article  CAS  Google Scholar 

  30. Verdurmen W P, Bovee-Geurts P H, Wadhwani P, Ulrich A S, Hallbrink M, van Kuppevelt T H, Brock R. Preferential uptake of L-versus D-amino acid cell-penetrating peptides in a cell typedependent manner. Chemistry & Biology, 2011, 18(8): 1000–1010

    Article  CAS  Google Scholar 

  31. Drin G, Cottin S, Blanc E, Rees A R, Temsamani J. Studies on the internalization mechanism of cationic cell-penetrating peptides. Journal of Biological Chemistry, 2003, 278(33): 31192–31201

    Article  CAS  Google Scholar 

  32. Kilk K, Magzoub M, Pooga M, Eriksson L E, Langel U, Graslund A. Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain. Comparison with the penetratin peptide. Bioconjugate Chemistry, 2001, 12(6): 911–916

    Article  CAS  Google Scholar 

  33. Han K, JeonMJ, Kim K A, Park J, Choi S Y. Efficient intracellular delivery of GFP by homeodomains of Drosophila Fushi-tarazu and Engrailed proteins. Molecules and Cells, 2000, 10(6): 728–732

    Article  CAS  Google Scholar 

  34. Elmquist A, Hansen M, Langel U. Structure-activity relationship study of the cell-penetrating peptide pVEC. Biochimica et Biophysica Acta, 2006, 1758(6): 721–729

    Article  CAS  Google Scholar 

  35. Wender P A, Mitchell D J, Pattabiraman K, Pelkey E T, Steinman L, Rothbard J B. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13003–13008

    Article  CAS  Google Scholar 

  36. Kamide K, Nakakubo H, Uno S, Fukamizu A. Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications. International Journal of Molecular Medicine, 2010, 25(1): 41–51

    CAS  Google Scholar 

  37. Takeshima K, Chikushi A, Lee K K, Yonehara S, Matsuzaki K. Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. Journal of Biological Chemistry, 2003, 278(2): 1310–1315

    Article  CAS  Google Scholar 

  38. Richard J P, Melikov K, Vives E, Ramos C, Verbeure B, Gait M J, Chernomordik L V, Lebleu B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry, 2003, 278(1): 585–590

    Article  CAS  Google Scholar 

  39. Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry, 1997, 272(25): 16010–16017

    Article  CAS  Google Scholar 

  40. Hariton-Gazal E, Feder R, Mor A, Graessmann A, Brack-Werner R, Jans D, Gilon C, Loyter A. Targeting of nonkaryophilic cellpermeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals. Biochemistry, 2002, 41(29): 9208–9214

    Article  CAS  Google Scholar 

  41. Patel L N, Wang J, Kim K J, Borok Z, Crandall E D, Shen W C. Conjugation with cationic cell-penetrating peptide increases pulmonary absorption of insulin. Molecular Pharmaceutics, 2009, 6(2): 492–503

    Article  CAS  Google Scholar 

  42. Zaro J L, Shen W C. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochemical and Biophysical Research Communications, 2003, 307(2): 241–247

    Article  CAS  Google Scholar 

  43. Zaro J L, Shen W C. Evidence that membrane transduction of oligoarginine does not require vesicle formation. Experimental Cell Research, 2005, 307(1): 164–173

    Article  CAS  Google Scholar 

  44. Park Y J, Chang L C, Liang J F, Moon C, Chung C P, Yang V C. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study. FASEB Journal, 2005, 19(11): 1555–1557

    CAS  Google Scholar 

  45. Wu F L, Yeh T H, Chen Y L, Chiu Y C, Cheng J C, Wei M F, Shen L J. Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells. Molecular Pharmaceutics, 2014, 11(8): 2777–2786

    Article  CAS  Google Scholar 

  46. Yang Z, Jiang Z, Cao Z, Zhang C, Gao D, Luo X, Zhang X, Luo H, Jiang Q, Liu J. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency. Nanoscale, 2014, 6(17): 10193–10206

    Article  CAS  Google Scholar 

  47. Morris M C, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 2001, 19(12): 1173–1176

    Article  CAS  Google Scholar 

  48. Kurzawa L, Pellerano M, Morris M C. PEP and CADY-mediated delivery of fluorescent peptides and proteins into living cells. Biochimica et Biophysica Acta, 2010, 1798(12): 2274–2285

    Article  CAS  Google Scholar 

  49. Lin Y Z, Yao S Y, Veach R A, Torgerson T R, Hawiger J. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. Journal of Biological Chemistry, 1995, 270(24): 14255–14258

    Article  CAS  Google Scholar 

  50. Soomets U, Lindgren M, Gallet X, Hallbrink M, Elmquist A, Balaspiri L, Zorko M, Pooga M, Brasseur R, Langel U. Deletion analogues of transportan. Biochimica et Biophysica Acta, 2000, 1467(1): 165–176

    Article  CAS  Google Scholar 

  51. Kobayashi S, Nakase I, Kawabata N, Yu H H, Pujals S, Imanishi M, Giralt E, Futaki S. Cytosolic targeting of macromolecules using a pH-dependent fusogenic peptide in combination with cationic liposomes. Bioconjugate Chemistry, 2009, 20(5): 953–959

    Article  CAS  Google Scholar 

  52. El-Sayed A, Futaki S, Harashima H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: Ways to overcome endosomal entrapment. AAPS Journal, 2009, 11(1): 13–22

    Article  CAS  Google Scholar 

  53. Wyman T B, Nicol F, Zelphati O, Scaria P V, Plank C, Szoka F C J. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997, 36(10): 3008–3017

    Article  CAS  Google Scholar 

  54. Wada S, Tsuda H, Okada T, Urata H. Cellular uptake of aibcontaining amphipathic helix peptide. Bioorganic & Medicinal Chemistry Letters, 2011, 21(19): 5688–5691

    Article  CAS  Google Scholar 

  55. Zaro J L, Vekich J E, Tran T, Shen W C. Nuclear localization of cell-penetrating peptides is dependent on endocytosis rather than cytosolic delivery in CHO cells. Molecular Pharmaceutics, 2009, 6 (2): 337–344

    Article  CAS  Google Scholar 

  56. Gomez J A, Chen J, Ngo J, Hajkova D, Yeh I J, Gama V, Miyagi M, Matsuyama S. Cell-penetrating penta-peptides (CPP5s): Measurement of cell entry and protein-transduction activity. Pharmaceuticals (Basel, Switzerland), 2010, 3(12): 3594–3613

    Article  CAS  Google Scholar 

  57. Fretz M M, Penning N A, Al-Taei S, Futaki S, Takeuchi T, Nakase I, Storm G, Jones A T. Temperature, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34 + leukaemia cells. Biochemical Journal, 2007, 403(2): 335–342

    Article  CAS  Google Scholar 

  58. Zaro J L, Rajapaksa T E, Okamoto C T, Shen W C. Membrane transduction of oligoarginine in HeLa cells is not mediated by macropinocytosis. Molecular Pharmaceutics, 2006, 3(2): 181–186

    Article  CAS  Google Scholar 

  59. Cohen-Avrahami M, Libster D, Aserin A, Garti N. Sodium diclofenac and cell-penetrating peptides embedded in H(II) mesophases: Physical characterization and delivery. Journal of Physical Chemistry B, 2011, 115(34): 10189–10197

    Article  CAS  Google Scholar 

  60. Sheng J, Oyler G, Zhou B, Janda K, Shoemaker C B. Identification and characterization of a novel cell-penetrating peptide. Biochemical and Biophysical Research Communications, 2009, 382(2): 236–240

    Article  CAS  Google Scholar 

  61. Shen WC, Ryser H J. Conjugation of poly-L-lysine to albumin and horseradish peroxidase: A novel method of enhancing the cellular uptake of proteins. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(4): 1872–1876

    Article  CAS  Google Scholar 

  62. Ryser H J, Shen W C, Merk F B. Membrane transport of macromolecules: New carrier functions of proteins and poly(amino acids). Life Sciences, 1978, 22(13–15): 1253–1260

    Article  CAS  Google Scholar 

  63. Pardridge W M, Buciak J L, Kang Y S, Boado R J. Protaminemediated transport of albumin into brain and other organs of the rat. Binding and endocytosis of protamine-albumin complex by microvascular endothelium. Journal of Clinical Investigation, 1993, 92(5): 2224–2229

    Article  CAS  Google Scholar 

  64. Wu G Y, Wu C H. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry, 1988, 27(3): 887–892

    Article  CAS  Google Scholar 

  65. Cotten M, Langle-Rouault F, Kirlappos H, Wagner E, Mechtler K, Zenke M, Beug H, Birnstiel M L. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(11): 4033–4037

    Article  CAS  Google Scholar 

  66. Ryser H J, Shen W C. Conjugation of methotrexate to poly(Llysine) increases drug transport and overcomes drug resistance in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(8): 3867–3870

    Article  CAS  Google Scholar 

  67. Shen W C, Ryser H J. Poly (L-lysine) and poly (D-lysine) conjugates of methotrexate: Different inhibitory effect on drug resistant cells. Molecular Pharmacology, 1979, 16(2): 614–622

    CAS  Google Scholar 

  68. Ryser H J, Shen W C. Conjugation of methotrexate to poly (Llysine) as a potential way to overcome drug resistance. Cancer, 1980, 45(5 Suppl): 1207–1211

    Article  CAS  Google Scholar 

  69. Han K, Jeon M J, Kim S H, Ki D, Bahn J H, Lee K S, Park J, Choi S Y. Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Molecules and Cells, 2001, 12(2): 267–271

    CAS  Google Scholar 

  70. Rothbard J B, Jessop T C, Lewis R S, Murray B A, Wender P A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. Journal of the American Chemical Society, 2004, 126(31): 9506–9507

    Article  CAS  Google Scholar 

  71. Goncalves E, Kitas E, Seelig J. Binding of oligoarginine to membrane lipids and heparan sulfate: Structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry, 2005, 44(7): 2692–2702

    Article  CAS  Google Scholar 

  72. Gelman R A, Glaser D N, Blackwell J. Interaction between chondroitin-6-sulfate and poly-L-arginine in aqueous solution. Biopolymers, 1973, 12(6): 1223–1232

    Article  CAS  Google Scholar 

  73. Richard J P, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik L V. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. Journal of Biological Chemistry, 2005, 280(15): 15300–15306

    Article  CAS  Google Scholar 

  74. Jiao C Y, Delaroche D, Burlina F, Alves I D, Chassaing G, Sagan S. Translocation and endocytosis for cell-penetrating peptide internalization. Journal of Biological Chemistry, 2009, 284(49): 33957–33965

    Article  CAS  Google Scholar 

  75. Zaro J L, Shen W C. Cytosolic delivery of a p16-peptide oligoarginine conjugate for inhibiting proliferation of MCF7 cells. Journal of Controlled Release, 2005, 108(2–3): 409–417

    Article  CAS  Google Scholar 

  76. Fei L, Ren L, Zaro J L, Shen W C. The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. Journal of Drug Targeting, 2011, 19(8): 675–680

    Article  CAS  Google Scholar 

  77. Law M, Jafari M, Chen P. Physicochemical characterization of siRNA-peptide complexes. Biotechnology Progress, 2008, 24(4): 957–963

    Article  CAS  Google Scholar 

  78. Pace C N, Scholtz J M. A helix propensity scale based on experimental studies of peptides and proteins. Biophysical Journal, 1998, 75(1): 422–442, 7

    Article  CAS  Google Scholar 

  79. Hong M, Su Y. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR. Protein Science, 2011, 20(4): 641–655

    Article  CAS  Google Scholar 

  80. Di Pisa M, Chassaing G, Swiecicki J M. Translocation mechanism (s) of cell-penetrating peptides: Biophysical studies using artificial membrane bilayers. Biochemistry, 2015, 54(2): 194–207

    Article  CAS  Google Scholar 

  81. Gelman R A, Blackwell J. Heparin-polypeptide interactions in aqueous solution. Archives of Biochemistry and Biophysics, 1973, 159(1): 427–433

    Article  CAS  Google Scholar 

  82. Shen W C, Ryser H J. Poly(L-lysine) has different membrane transport and drug-carrier properties when complexed with heparin. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(12): 7589–7593

    Article  CAS  Google Scholar 

  83. Su Y, Doherty T, Waring A J, Ruchala P, Hong M. Roles of arginine and lysine residues in the translocation of a cellpenetrating peptide from (13)C, (31)P, and (19)F solid-state NMR. Biochemistry, 2009, 48(21): 4587–4595

    Article  CAS  Google Scholar 

  84. Clark K S, Svetlovics J, McKeown A N, Huskins L, Almeida P F. What determines the activity of antimicrobial and cytolytic peptides in model membranes. Biochemistry, 2011, 50(37): 7919–7932

    Article  CAS  Google Scholar 

  85. Alves I D, Goasdoue N, Correia I, Aubry S, Galanth C, Sagan S, Lavielle S, Chassaing G. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochimica et Biophysica Acta, 2008, 1780(7-8): 948–959

    Google Scholar 

  86. Derossi D, Joliot A H, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 1994, 269(14): 10444–10450

    CAS  Google Scholar 

  87. Kaplan I M, Wadia J S, Dowdy S F. Cationic TAT peptide transduction domain enters cells by macropinocytosis. Journal of Controlled Release, 2005, 102(1): 247–253

    Article  CAS  Google Scholar 

  88. Wadia J S, Stan R V, Dowdy S F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine, 2004, 10(3): 310–315

    Article  CAS  Google Scholar 

  89. Yesylevskyy S, Marrink S J, Mark A E. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. Biophysical Journal, 2009, 97 (1): 40–49

    Article  CAS  Google Scholar 

  90. Fittipaldi A, Ferrari A, Zoppe M, Arcangeli C, Pellegrini V, Beltram F, Giacca M. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. Journal of Biological Chemistry, 2003, 278(36): 34141–34149

    Article  CAS  Google Scholar 

  91. Ferrari M E, Nguyen C M, Zelphati O, Tsai Y, Felgner P L. Analytical methods for the characterization of cationic lipidnucleic acid complexes. Human Gene Therapy, 1998, 9(3): 341–351

    Article  CAS  Google Scholar 

  92. Qian Z, LaRochelle J R, Jiang B, Lian W, Hard R L, Selner N G, Luechapanichkul R, Barrios A M, Pei D. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry, 2014, 53(24): 4034–4046

    Article  CAS  Google Scholar 

  93. Lundberg P, El-Andaloussi S, Sutlu T, Johansson H, Langel U. Delivery of short interfering RNA using endosomolytic cellpenetrating peptides. FASEB Journal, 2007, 21(11): 2664–2671

    Article  CAS  Google Scholar 

  94. Yang S T, Zaitseva E, Chernomordik L V, Melikov K. Cellpenetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophysical Journal, 2010, 99 (8): 2525–2533

    Article  CAS  Google Scholar 

  95. Deshayes S, Plenat T, Charnet P, Divita G, Molle G, Heitz F. Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochimica et Biophysica Acta, 2006, 1758 (11): 1846–1851

    Article  CAS  Google Scholar 

  96. Kenien R, Shen W C, Zaro J L. Vesicle-to-cytosol transport of disulfide-linked cargo mediated by an amphipathic cell-penetrating peptide. Journal of Drug Targeting, 2012, 20(9): 793–800

    Article  CAS  Google Scholar 

  97. Kenien R, Zaro J L, Shen W C. MAP-mediated nuclear delivery of a cargo protein. Journal of Drug Targeting, 2012, 20(4): 329–337

    Article  CAS  Google Scholar 

  98. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by a-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta, 1999, 1462(1–2): 55–70

    Article  CAS  Google Scholar 

  99. Matsuzaki K, Sugishita K, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gramnegative bacteria. FEBS Letters, 1999, 449(2–3): 221–224

    Article  CAS  Google Scholar 

  100. Yang L, Harroun T A, Weiss T M, Ding L, Huang H W. Barrelstave model or toroidal model? A case study on melittin pores. Biophysical Journal, 2001, 81(3): 1475–1485

    Article  Google Scholar 

  101. Berlose J P, Convert O, Derossi D, Brunissen A, Chassaing G. Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments. European Journal of Biochemistry, 1996, 242(2): 372–386

    Article  CAS  Google Scholar 

  102. Mor A, Nguyen V H, Delfour A, Migliore-Samour D, Nicolas P. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry, 1991, 30(36): 8824–8830

    Article  CAS  Google Scholar 

  103. Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry, 1996, 35(35): 11361–11368

    Article  CAS  Google Scholar 

  104. Matsuzaki K, Murase O, Fujii N, Miyajima K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry, 1995, 34(19): 6521–6526

    Article  CAS  Google Scholar 

  105. Ludtke S J, He K, Heller W T, Harroun T A, Yang L, Huang H W. Membrane pores induced by magainin. Biochemistry, 1996, 35 (43): 13723–13728

    Article  CAS  Google Scholar 

  106. Brauner J W, Mendelsohn R, Prendergast F G. Attenuated total reflectance Fourier transform infrared studies of the interaction of melittin, two fragments of melittin, and δ-hemolysin with phosphatidylcholines. Biochemistry, 1987, 26(25): 8151–8158

    Article  CAS  Google Scholar 

  107. Frey S, Tamm L K. Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophysical Journal, 1991, 60(4): 922–930

    Article  CAS  Google Scholar 

  108. Mueller J, Kretzschmar I, Volkmer R, Boisguerin P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjugate Chemistry, 2008, 19(12): 2363–2374

    Article  CAS  Google Scholar 

  109. Saar K, Lindgren M, Hansen M, Eiriksdottir E, Jiang Y, Rosenthal- Aizman K, Sassian M, Langel U. Cell-penetrating peptides: A comparative membrane toxicity study. Analytical Biochemistry, 2005, 345(1): 55–65

    Article  CAS  Google Scholar 

  110. El-Andaloussi S, Jarver P, Johansson H J, Langel U. Cargodependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. Biochemical Journal, 2007, 407(2): 285–292

    Article  CAS  Google Scholar 

  111. Rothbard J B, Jessop T C, Lewis R S, Murray B A, Wender P A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. Journal of the American Chemical Society, 2004, 126(31): 9506–9507

    Article  CAS  Google Scholar 

  112. Zaro J L, Shen W C. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochemical and Biophysical Research Communications, 2003, 307(2): 241–247

    Article  CAS  Google Scholar 

  113. Zaro J L, Shen W C. Evidence that membrane transduction of oligoarginine does not require vesicle formation. Experimental Cell Research, 2005, 307(1): 164–173

    Article  CAS  Google Scholar 

  114. Patel L N, Zaro J L, Shen W C. Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 2007, 24(11): 1977–1992

    Article  CAS  Google Scholar 

  115. Sawant R, Torchilin V. Intracellular transduction using cellpenetrating peptides. Molecular BioSystems, 2010, 6(4): 628–640

    Article  CAS  Google Scholar 

  116. Schmidt N, Mishra A, Lai G H, Wong G C L. Arginine-rich cellpenetrating peptides. FEBS Letters, 2010, 584(9): 1806–1813

    Article  CAS  Google Scholar 

  117. Wender P A, Galliher W C, Goun E A, Jones L R, Pillow T H. The design of guanidinium-rich transporters and their internalization mechanisms. Advanced Drug Delivery Reviews, 2008, 60(4–5): 452–472

    Article  CAS  Google Scholar 

  118. Ziegler A. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Advanced Drug Delivery Reviews, 2008, 60(4–5): 580–597

    Article  CAS  Google Scholar 

  119. Jiao C Y, Delaroche D, Burlina F, Alves I D, Chassaing G, Sagan S. Translocation and endocytosis for cell-penetrating peptideinternalization. Journal of Biological Chemistry, 2009, 284(49): 33957–33965

    Article  CAS  Google Scholar 

  120. Herbig M E, Weller K M, Merkle H P. Reviewing biophysical and cell biological methodologies in cell-penetrating peptide (CPP) research. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24(3): 203–255

    Article  CAS  Google Scholar 

  121. Shen W C. Acid-sensitive dissociation between poly(lysine) and histamine-modified poly(glutamate) as a model for drug-releasing from carriers in endosomes. Biochimica et Biophysica Acta, 1990, 1034(1): 122–124

    Article  CAS  Google Scholar 

  122. Fei L, Yap L P, Conti P S, Shen W C, Zaro J L. Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidineglutamate co-oligopeptide. Biomaterials, 2014, 35(13): 4082–4087

    Article  CAS  Google Scholar 

  123. Sun C, Shen W C, Tu J, Zaro J L. Interaction between cellpenetrating peptides and acid-sensitive anionic oligopeptides as a model for the design of targeted drug carriers. Molecular Pharmaceutics, 2014, 11(5): 1583–1590

    Article  CAS  Google Scholar 

  124. Olson E S, Aguilera T A, Jiang T, Ellies L G, Nguyen Q T, Wong E H, Gross L A, Tsien R Y. In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integrative Biology: Quantitative Biosciences from Nano to Macro, 2009, 1(5–6): 382–393

    Article  CAS  Google Scholar 

  125. Savariar E N, Felsen C N, Nashi N, Jiang T, Ellies L G, Steinbach P, Tsien R Y, Nguyen Q T. Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cellpenetrating peptides. Cancer Research, 2013, 73(2): 855–864

    Article  CAS  Google Scholar 

  126. Weinstain R, Savariar E N, Felsen C N, Tsien R Y. In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. Journal of the American Chemical Society, 2014, 136(3): 874–877

    Article  CAS  Google Scholar 

  127. Lee S H, Castagner B, Leroux J C. Is there a future for cellpenetrating peptides in oligonucleotide delivery? European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85(1): 5–11

    Article  CAS  Google Scholar 

  128. Crombez L, Aldrian-Herrada G, Konate K, Nguyen Q N, McMaster G K, Brasseur R, Heitz F, Divita G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Molecular Therapy, 2009, 17(1): 95–103

    Article  CAS  Google Scholar 

  129. Dubikovskaya E A, Thorne S H, Pillow T H, Contag C H, Wender P A. Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12128–12133

    Article  CAS  Google Scholar 

  130. Liu H, Zhang W, Ma L, Fan L, Gao F, Ni J, Wang R. The improved blood-brain barrier permeability of endomorphin-1 using the cellpenetrating peptide synB3 with three different linkages. International Journal of Pharmaceutics, 2014, 476(1–2): 1–8

    Article  CAS  Google Scholar 

  131. Hauff S J, Raju S C, Orosco R K, Gross A M, Diaz-Perez J A, Savariar E, Nashi N, Hasselman J, Whitney M, Myers J N, Lippman S M, Tsien R Y, Ideker T, Nguyen Q T. Matrixmetalloproteinases in head and neck carcinoma-cancer genome atlas analysis and fluorescence imaging in mice. Otolaryngology- Head and Neck Surgery, 2014, 151(4): 612–618

    Article  Google Scholar 

  132. Gotanda Y, Wei F Y, Harada H, Ohta K, Nakamura K, Tomizawa K, Ushijima K. Efficient transduction of 11 poly-arginine peptide in an ischemic lesion of mouse brain. Journal of Stroke and Cerebrovascular Diseases, 2014, 23(8): 2023–2030

    Article  Google Scholar 

  133. van Duijnhoven S M, Robillard M S, Hermann S, Kuhlmann M T, Schafers M, Nicolay K, Grull H. Imaging of MMP activity in postischemic cardiac remodeling using radiolabeled MMP-2/9 activatable peptide probes. Molecular Pharmaceutics, 2014, 11(5): 1415–1423

    Article  CAS  Google Scholar 

  134. Neundorf I, Rennert R, Franke J, Kozle I, Bergmann R. Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides. Bioconjugate Chemistry, 2008, 19(8): 1596–1603

    Article  CAS  Google Scholar 

  135. Weiss H M, Wirz B, Schweitzer A, Amstutz R, Rodriguez Perez M I, Andres H, Metz Y, Gardiner J, Seebach D. ADME investigations of unnatural peptides: Distribution of a 14C-labeled ß 3- octaarginine in rats. Chemistry & Biodiversity, 2007, 4(7): 1413–1437

    Article  CAS  Google Scholar 

  136. Sehgal I, Sibrian-Vazquez M, Vicente M G. Photoinduced cytotoxicity and biodistribution of prostate cancer cell-targeted porphyrins. Journal of Medicinal Chemistry, 2008, 51(19): 6014–6020

    Article  CAS  Google Scholar 

  137. Felsen C N, Savariar E N, Whitney M, Tsien R Y. Detection and monitoring of localized matrix metalloproteinase upregulation in a murine model of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2014, 306(8): L764–L774

    Article  CAS  Google Scholar 

  138. Michiue H, Sakurai Y, Kondo N, Kitamatsu M, Bin F, Nakajima K, Hirota Y, Kawabata S, Nishiki T, Ohmori I, Tomizawa K, Miyatake S, Ono K, Matsui H. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials, 2014, 35(10): 3396–3405

    Article  CAS  Google Scholar 

  139. Temming R P, Eggermont L, van Eldijk M B, van Hest J C, van Delft F L. N-Terminal dual protein functionalization by strainpromoted alkyne-nitrone cycloaddition. Organic & Biomolecular Chemistry, 2013, 11(17): 2772–2779

    Article  CAS  Google Scholar 

  140. Shen W C, Ryser H J. Cis-Aconityl spacer between daunomycin and macromolecular carriers: A model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochemical and Biophysical Research Communications, 1981, 102(3): 1048–1054

    Article  CAS  Google Scholar 

  141. Walker L, Perkins E, Kratz F, Raucher D. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. International Journal of Pharmaceutics, 2012, 436(1–2): 825–832

    Article  CAS  Google Scholar 

  142. Nakase I, Konishi Y, Ueda M, Saji H, Futaki S. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. Journal of Controlled Release, 2012, 159(2): 181–188

    Article  CAS  Google Scholar 

  143. Vives E. Present and future of cell-penetrating peptide mediated delivery systems: Is the Trojan horse too wild to go only to Troy? Journal of Controlled Release, 2005, 109(1–3): 77–85

    Article  CAS  Google Scholar 

  144. Vives E, Schmidt J, Pelegrin A. Cell-penetrating and cell-targeting peptides in drug delivery. Biochimica et Biophysica Acta, 2008, 1786(2): 126–138

    CAS  Google Scholar 

  145. Heitz F, Morris M C, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. British Journal of Pharmacology, 2009, 157(2): 195–206

    Article  CAS  Google Scholar 

  146. Sarko D, Beijer B, Garcia B R, Nothelfer E M, Leotta K, Eisenhut M, Altmann A, Haberkorn U, Mier W. The pharmacokinetics of cell-penetrating peptides. Molecular Pharmaceutics, 2010, 7(6): 2224–2231

    Article  CAS  Google Scholar 

  147. Hamann P R, Hinman L M, Beyer C F, Lindh D, Upeslacis J, Flowers D A, Bernstein I. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjugate Chemistry, 2002, 13(1): 40–46

    Article  CAS  Google Scholar 

  148. Anderson D C, Nichols E, Manger R, Woodle D, Barry M, Fritzberg A R. Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT protein-derived peptide. Biochemical and Biophysical Research Communications, 1993, 194(2): 876–884

    Article  CAS  Google Scholar 

  149. Trudel D, Fradet Y, Meyer F, Harel F, Tetu B. Significance of MMP-2 expression in prostate cancer: An immunohistochemical study. Cancer Research, 2003, 63(23): 8511–8515

    CAS  Google Scholar 

  150. Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and-9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 2005, 87(3–4): 287–297

    Article  CAS  Google Scholar 

  151. Gerweck L E, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Research, 1996, 56(6): 1194–1198

    CAS  Google Scholar 

  152. Getzenberg R H, Coffey D S, De Weese T L. Hyperthermic biology and cancer therapies a hypothesis for the “Lance Armstrong effect”. Journal of the American Medical Association, 2006, 296 (4): 445–448

    Article  Google Scholar 

  153. Denko N, Cairns R, Papandreou I. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Molecular Cancer Research, 2006, 4(2): 61–70

    Article  Google Scholar 

  154. Crisp J L, Savariar E N, Glasgow H L, Ellies L G, Whitney M A, Tsien R Y. Dual targeting of integrin avß3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Molecular Cancer Therapeutics, 2014, 13(6): 1514–1525

    Article  CAS  Google Scholar 

  155. Nguyen Q T, Olson E S, Aguilera T A, Jiang T, Scadeng M, Ellies L G, Tsien R Y. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9): 4317–4322

    Article  CAS  Google Scholar 

  156. van Duijnhoven S M, Robillard M S, Nicolay K, Grull H. Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. Journal of Nuclear Medicine, 2011, 52(2): 279–286

    Article  CAS  Google Scholar 

  157. Zaro J L, Fei L, Shen W C. Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. Journal of Controlled Release, 2012, 158(3): 357–361

    Article  CAS  Google Scholar 

  158. Zhu L, Kate P, Torchilin V P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano, 2012, 6(4): 3491–3498

    Article  CAS  Google Scholar 

  159. Apte A, Koren E, Koshkaryev A, Torchilin V P. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drugresistant ovarian cancer models. Cancer Biology & Therapy, 2014, 15(1): 69–80

    Article  CAS  Google Scholar 

  160. Leader B, Baca Q J, Golan D E. Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 2008, 7(1): 21–39

    Article  CAS  Google Scholar 

  161. He H, Sheng J, David A E, Kwon YM, Zhang J, Huang Y, Wang J, Yang V C. The use of low molecular weight protamine chemical chimera to enhance monomeric insulin intestinal absorption. Biomaterials, 2013, 34(31): 7733–7743

    Article  CAS  Google Scholar 

  162. Liang J F, Yang V C. Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochemical and Biophysical Research Communications, 2005, 335(3): 734–738

    Article  CAS  Google Scholar 

  163. Liu E, Sheng J, Ye J, Wang Y, Gong J, Yang V C, Wang J, He H. CPP mediated insulin delivery: Current status and promising future. Current Pharmaceutical Biotechnology, 2014, 15(3): 240–255

    Article  CAS  Google Scholar 

  164. Fei L. Cell Penetrating Peptide-Based Drug Delivery System for Targeting Mildly Acidic pH. Dissertation for the Doctoral Degree. California: University of Southern California, 2014

    Google Scholar 

  165. Chen X, Zaro J L, Shen W C. Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 2013, 65(10): 1357–1369

    Article  CAS  Google Scholar 

  166. Almeida P F. Membrane-active peptides: Binding, translocation, and flux in lipid vesicles. Biochimica et Biophysica Acta, 2014, 1838(9): 2216–2227

    Article  CAS  Google Scholar 

  167. Shin M C, Zhang J, Min K A, Lee K, Moon C, Balthasar J P, Yang V C. Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy. Journal of Controlled Release, 2014, 194: 197–210

    Article  CAS  Google Scholar 

  168. Xu J, Xiang Q, Su J, Yang P, Zhang Q, Su Z, Xiao F, Huang Y. Evaluation of the safety and brain-related tissues distribution characteristics of TAT-HaFGF via intranasal administration. Biological & Pharmaceutical Bulletin, 2014, 37(7): 1149–1157

    Article  CAS  Google Scholar 

  169. Cai S R, Xu G, Becker-Hapak M, Ma M, Dowdy S F, McLeod H L. The kinetics and tissue distribution of protein transduction in mice. European Journal of Pharmaceutical Sciences, 2006, 27(4): 311–319

    Article  CAS  Google Scholar 

  170. Cerchietti L C, Yang S N, Shaknovich R, Hatzi K, Polo J M, Chadburn A, Dowdy S F, Melnick A. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood, 2009, 113(15): 3397–3405

    Article  CAS  Google Scholar 

  171. Bowne W B, Michl J, Bluth M H, Zenilman M E, Pincus M R. Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer. Cancer Therapy, 2007, 5B: 331–344

    Google Scholar 

  172. Kwon M K, Nam J O, Park R W, Lee B H, Park J Y, Byun Y R, Kim S Y, Kwon I C, Kim I S. Antitumor effect of a transducible fusogenic peptide releasing multiple proapoptotic peptides by caspase-3. Molecular Cancer Therapeutics, 2008, 7(6): 1514–1522

    Article  CAS  Google Scholar 

  173. Tan M, Lan K H, Yao J, Lu C H, Sun M, Neal C L, Lu J, Yu D. Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Research, 2006, 66(7): 3764–3772

    Article  CAS  Google Scholar 

  174. Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, Omata M. Cutting edge: The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. Journal of Immunology 2007, 179(5): 2681–2685

    Article  CAS  Google Scholar 

  175. Ghosh A, Roy A, Liu X, Kordower J H, Mufson E J, Hartley D M, Ghosh S, Mosley R L, Gendelman H E, Pahan K. Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18754–18759

    Article  CAS  Google Scholar 

  176. Hotchkiss R S, McConnell KW, Bullok K, Davis C G, Chang K C, Schwulst S J, Dunne J C, Dietz G P, Bahr M, McDunn J E, Karl I E, Wagner T H, Cobb J P, Coopersmith C M, Piwnica-Worms D. TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. Journal of Immunology (Baltimore, MD.: 1950), 2006, 176(9): 5471–5477

    Article  CAS  Google Scholar 

  177. McCusker C T, Wang Y, Shan J, Kinyanjui M W, Villeneuve A, Michael H, Fixman E D. Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominantnegative STAT-6 peptide. Journal of Immunology, 2007, 179(4): 2556–2564

    Article  CAS  Google Scholar 

  178. Walker L R, Ryu J S, Perkins E, McNally L R, Raucher D. Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer. Drug Design, Development and Therapy, 2014, 8: 1649–1658

    Article  CAS  Google Scholar 

  179. Qiu X, Johnson J R, Wilson B S, Gammon S T, Piwnica-Worms D, Barnett EM. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe. PLoS One, 2014, 9(2): e88855

    Article  CAS  Google Scholar 

  180. He X H, Yan X T, Wang Y L, Wang C Y, Zhang Z Z, Zhan J. Transduced PEP-1-heme oxygenase-1 fusion protein protects against intestinal ischemia/reperfusion injury. Journal of Surgical Research, 2014, 187(1): 77–84

    Article  CAS  Google Scholar 

  181. He X H, Wang Y, Yan X T, Wang Y L, Wang C Y, Zhang Z Z, Li H, Jiang H X. Transduction of PEP-1-heme oxygenase-1 fusion protein reduces myocardial ischemia/reperfusion injury in rats. Journal of Cardiovascular Pharmacology, 2013, 62(5): 436–442

    Article  CAS  Google Scholar 

  182. McCarthy H O, McCaffrey J, McCrudden CM, Zholobenko A, Ali A A, McBride J W, Massey A S, Pentlavalli S, Chen K H, Cole G, Loughran S P, Dunne N J, Donnelly R F, Kett V L, Robson T. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. Journal of Controlled Release, 2014, 189: 141–149

    Article  CAS  Google Scholar 

  183. Wang H, Wang H, Liang J, Jiang Y, Guo Q, Peng H, Xu Q, Huang Y. Cell-penetrating apoptotic peptide/p53 DNA nanocomplex as adjuvant therapy for drug-resistant breast cancer. Molecular Pharmaceutics, 2014, 11(10): 3352–3360

    Article  CAS  Google Scholar 

  184. Hu Y, Xu B, Ji Q, Shou D, Sun X, Xu J, Gao J, Liang W. A mannosylated cell-penetrating peptide-graft-polyethylenimine as a gene delivery vector. Biomaterials, 2014, 35(13): 4236–4246

    Article  CAS  Google Scholar 

  185. Wang H X, Yang X Z, Sun C Y, Mao C Q, Zhu Y H, Wang J. Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Biomaterials, 2014, 35(26): 7622–7634

    Article  CAS  Google Scholar 

  186. Nielsen E J, Yoshida S, Kamei N, Iwamae R, Khafagy E S, Olsen J, Rahbek U L, Pedersen B L, Takayama K, Takeda-Morishita M. Khafagyel S, Olsen J, Rahbek U L, Pedersen B L, Takayama K, Takeda-Morishita M. in vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cellpenetrating peptide penetratin. Journal of Controlled Release, 2014, 189: 19–24

    Article  CAS  Google Scholar 

  187. Manosroi J, Lohcharoenkal W, Gotz F, Werner R G, Manosroi W, Manosroi A. Novel application of polioviral capsid: Development of a potent and prolonged oral calcitonin using polioviral binding ligand and Tat peptide. Drug Development and Industrial Pharmacy, 2014, 40(8): 1092–1100

    Article  CAS  Google Scholar 

  188. Wiethoff C M, Middaugh C R. Barriers to nonviral gene delivery. Journal of Pharmaceutical Sciences, 2003, 92(2): 203–217

    Article  CAS  Google Scholar 

  189. Nam H Y, Kim J, Kim S, Yockman J W, Kim S W, Bull D A. Cell penetrating peptide conjugated bioreducible polymer for siRNA delivery. Biomaterials, 2011, 32(22): 5213–5222

    Article  CAS  Google Scholar 

  190. Mo R H, Zaro J L, Shen W C. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Molecular Pharmaceutics, 2012, 9(2): 299–309

    Article  CAS  Google Scholar 

  191. Margus H, Padari K, Pooga M. Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Molecular Therapy, 2012, 20(3): 525–533

    Article  CAS  Google Scholar 

  192. Amidon G L, Lee H J. Absorption of peptide and peptidomimetic drugs. Annual Review of Pharmacology and Toxicology, 1994, 34 (1): 321–341

    Article  CAS  Google Scholar 

  193. Farkhani S M, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 2014, 57: 78–94

    Article  CAS  Google Scholar 

  194. Cleal K, He L, Watson P D, Jones A T. Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles. Current Pharmaceutical Design, 2013, 19(16): 2878–2894

    Article  CAS  Google Scholar 

  195. Zhang B, Zhang Y, Liao Z, Jiang T, Zhao J, Tuo Y, She X, Shen S, Chen J, Zhang Q, Jiang X, Hu Y, Pang Z. UPA-sensitive ACPPconjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials, 2015, 36: 98–109

    Article  CAS  Google Scholar 

  196. Mei L, Zhang Q, Yang Y, He Q, Gao H. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. International Journal of Pharmaceutics, 2014, 474(1–2): 95–102

    Article  CAS  Google Scholar 

  197. Fan T, Chen C, Guo H, Xu J, Zhang J, Zhu X, Yang Y, Zhou Z, Li L, Huang Y. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88(2): 518–528

    Article  CAS  Google Scholar 

  198. Huang A, Su Z, Li S, Sun M, Xiao Y, Ping Q, Deng Y. Oral absorption enhancement of salmon calcitonin by using both Ntrimethyl chitosan chloride and oligoarginines-modified liposomes as the carriers. Drug Delivery, 2014, 21(5): 388–396

    Article  CAS  Google Scholar 

  199. Gao H, Zhang S, Cao S, Yang Z, Pang Z, Jiang X. Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Molecular Pharmaceutics, 2014, 11(8): 2755–2763

    Article  CAS  Google Scholar 

  200. Yang Y, Yang Y, Xie X, Cai X, Zhang H, Gong W, Wang Z, Mei X. PEGylated liposomes with NGR ligand and heat-activable cellpenetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials, 2014, 35(14): 4368–4381

    Article  CAS  Google Scholar 

  201. Zong T, Mei L, Gao H, Cai W, Zhu P, Shi K, Chen J, Wang Y, Gao F, He Q. Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Molecular Pharmaceutics, 2014, 11(7): 2346–2357

    Article  CAS  Google Scholar 

  202. Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, Zhang Q, Gao H, Zhang Z, He Q. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials, 2014, 35(17): 4835–4847

    Article  CAS  Google Scholar 

  203. Tang J, Zhang L, Liu Y, Zhang Q, Qin Y, Yin Y, Yuan W, Yang Y, Xie Y, Zhang Z, He Q. Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT. International Journal of Pharmaceutics, 2013, 454(1): 31–40

    Article  CAS  Google Scholar 

  204. Wang J, Yu Y, Yan Z, Hu Z, Li L, Li J, Jiang X, Qian Q. Anticancer activity of oncolytic adenoviruses carrying p53 is augmented by 11R in gallbladder cancer cell lines in vitro and in vivo. Oncology Reports, 2013, 30(2): 833–841

    CAS  Google Scholar 

  205. Tang J, Fu H, Kuang Q, Zhang L, Zhang Q, Liu Y, Ran R, Gao H, Zhang Z, He Q. Liposomes co-modified with cholesterol anchored cleavable PEG and octaarginines for tumor targeted drug delivery. Journal of Drug Targeting, 2014, 22(4): 313–326

    Article  CAS  Google Scholar 

  206. Shamay Y, Shpirt L, Ashkenasy G, David A. Complexation of cellpenetrating peptide-polymer conjugates with polyanions controls cells uptake of HPMA copolymers and anti-tumor activity. Pharmaceutical Research, 2014, 31(3): 768–779

    Article  CAS  Google Scholar 

  207. Wang Y, Dou L, He H, Zhang Y, Shen Q. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Molecular Pharmaceutics, 2014, 11(3): 885–894

    Article  CAS  Google Scholar 

  208. Nakamura T, Yamazaki D, Yamauchi J, Harashima H. The nanoparticulation by octaarginine-modified liposome improves alpha-galactosylceramide-mediated antitumor therapy via systemic administration. Journal of Controlled Release, 2013, 171(2): 216–224

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chiang Shen.

Additional information

Dr. Wei-Chiang Shen received his Ph.D. degree in Bioorganic Chemistry from Boston University, Boston. He is currently the Associate Dean of Research and John A. Biles Professor in Pharmaceutical Sciences at the University of Southern California School of Pharmacy. Dr. Shen’s research interests focus on the development of novel systems for improving peptide and protein drug delivery. He has published 150 papers in different areas of biomedical sciences, including biochemistry, cell biology, pharmaceutics, and biotechnology. He is an inventor or co-inventor of 11 issued and 4 pending US patents in drug delivery and a co-author of the textbook Immunology for Pharmacy Students. Dr. Shen was elected to Fellow of the American Association of Pharmaceutical Scientists (AAPS) and Fellow of the American Association for the Advancement of Sciences (AAAS), and was the recipient of 2002 Eurand Award for Outstanding Novel Research in Oral Drug Delivery.

Dr. Jennica L. Zaro is a Research Assistant Professor and a Core Director of the Translational Research and Histology Laboratories at the School of Pharmacy, University of Southern California, Los Angeles. Her main research projects are focused on targeted delivery of peptide and protein drugs and on recombinant bifunctional fusion proteins as therapeutics. Prior to joining the university, Dr. Zaro received her PhD in pharmaceutical sciences from the University of Southern California, where she focused on the design and characterization of peptide carriers for protein drugs. In addition, she has held several roles in the pharmaceutical industry, where she developed formulations for aerosol products and designed and validated analytical methods for protein drugs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaro, J.L., Shen, WC. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Front. Chem. Sci. Eng. 9, 407–427 (2015). https://doi.org/10.1007/s11705-015-1538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1538-y

Keywords

Navigation