Skip to main content
Log in

Optimization of microwave-assisted extraction for picroside I and picroside II from Picrorrhiza kurroa using Box-Behnken experimental design

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The response surface methodology was employed to study the optimization of microwave-assisted extraction of picroside I and picroside II from Picrorrhiza kurroa Royle rhizomes. The effects of solid to solvent ratio, and extraction temperature, time and solvent on the yields of picroside I and picroside II have been investigated using Box-Behnken experimental design. The experimental data were fitted to second-order polynomial equations using multiple regression analysis and analyzed using the appropriate statistical method. By solving the regression equation and analyzing 3-D plots, the optimum extraction conditions were found to be: solid to solvent ratio, 10: 90 (w/v); temperature, 60 °C; and extraction time, 60 s. Under the optimal conditions, the yields of picroside I and picroside II are 41.23 and 6.12 mg·g−1 feed respectively, which are in good agreement with the predicted values. The ratio of solid to solvent significantly affects the yields of picroside I and picroside II. Application of microwaveassisted extraction of picroside I and picroside II from P. kurroa would dramatically reduce extraction time and solvent consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Luper S. A review of plants used in the treatment of liver disease: Part 1. Alternative Medicine Review, 1998, 3(6): 410–421

    CAS  Google Scholar 

  2. Dhawan B N. Picroliv—a new hepatoprotective agent from an Indian medicinal plant, Picrorhiza kurroa. Medicinal Chemistry Research, 1995, 5 (8): 595–605

    Google Scholar 

  3. Singh G B, Bani S, Singh S, Kaul A, Khajuria A, Sharma M L, Gupta B D, Banerjee S K. Anti-inflammatory activity of the iridoids kutkin, picroside-I and kutkoside from Picrorhiza kurroa. Phytotherapy Research, 1993, 7(6): 402–407

    Article  CAS  Google Scholar 

  4. Recio D C, Maria M, Ginger R, Manez S, Rios J L. Structural considerations on the iridoids as anti-inflammatory agents. Planta Medica, 1994, 60(3): 232–234

    Article  CAS  Google Scholar 

  5. Atal C K, Sharma M L, Kaul A, Khajuria A. Immunomodulating agents of plant origin. I: Preliminary screening. Journal of Ethnopharmacology, 1986, 18(2): 133–141

    Article  CAS  Google Scholar 

  6. Puri A, Saxena R P, Sumati Guru P Y, Kulshreshtha D K, Saxena K C, Dhawan B N. Immunostimulant activity of picroliv, the iridoid glycoside fraction of Picrorhiza kurroa, and its protective action against Leishmania donovani infection in Hamsters. Planta Medica, 1992, 58(6): 528–532

    Article  CAS  Google Scholar 

  7. Chander R, Kapoor N K, Dhawan B N. Picroliv, picroside-I and kutkoside from Picrorhiza kurrooa are scavengers of superoxide anions. Biochemical Pharmacology, 1992, 44(1): 180–183

    Article  CAS  Google Scholar 

  8. Girish C, Koner B C, Jayanthi S, Ramchandrarao K, Rajesh B, Pradhan S C. Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in mice. Fundamental & Clinical Pharmacology, 2009, 23(6): 735–745

    Article  CAS  Google Scholar 

  9. Kiso Y, Tohkin M, Hikino H. Assay method for antihepatotoxic activity using galactosamine induced cytotoxicity in primary cultured hepatocytes. Journal of Natural Products, 1983, 46(6): 841–847

    Article  CAS  Google Scholar 

  10. Kitagawa I, Hino K, Nishlmura T, Iwata E, Yosioka I. On the constituents of Picrorhiza kurrooa. (1). The structure of picroside I, a bitter principle of the subterranean part. Chemical & Pharmaceutical Bulletin, 1971, 19(12): 2534–2544

    Article  CAS  Google Scholar 

  11. Tiwari S S, Pandey M M, Srivastava S, Rawat A K S. TLC densitometric quantification of picrosides (picroside-I and picroside-II) in Picrorhiza kurroa and its substitute Picrorhiza scrophulariiflora and their antioxidant studies. Biomedical Chromatography, 2012, 26(1): 61–68

    Article  CAS  Google Scholar 

  12. Gaikwad P S, Bhope S G, Kuber V V, Patil M J. Validated TLC method for simultaneous quantitation of kutkoside and picroside-I from kutki extract. Phytochemical Analysis, 2011, 22(1): 36–41

    Article  CAS  Google Scholar 

  13. Bhandari P, Kumar N, Singh B, Kaul V K. Simultaneous determination of sugars and picrosides in Picrorhiza species using ultrasonic extraction and high-performance liquid chromatography with evaporative light scattering detection. Journal of Chromatography. A, 2008, 1194(2): 257–261

    Article  CAS  Google Scholar 

  14. Wakte P S, Sachin B S, Patil A A, Mohato D M, Band T H, Shinde D B. Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Separation and Purification Technology, 2011, 79 (1): 50–55

    Article  CAS  Google Scholar 

  15. Eskilsson C S, Bjorklund E. Analytical-scale microwave assisted extraction. Journal of Chromatography A, 2000, 902(1): 227–250

    Article  CAS  Google Scholar 

  16. Box G E P, Hunter W G, Hunter J S. Statistics for Experimenters. New York: Wiley, 1997

    Google Scholar 

  17. Montgomery D C. Design and Analysis of Experiments. 4th ed. New York: Wiley, 1997

    Google Scholar 

  18. Patil A A, Bhusari S S, Wakte P S, Shinde D B. Optimization of sample preparation variables for wedelolactone from Eclipta alba using Box-Behnken experimental design followed by HPLC identification. Annales Pharmaceutiques Francaises, 2013, 71(4): 249–259

    Article  CAS  Google Scholar 

  19. Patil A A, Bhusari S S, Wakte P S, Shinde D B. Study of supercritical fluid extraction and ionic liquids as an additive on picroside I and picroside II recovery from Picrorhiza scrophulariiflora rhizomes. Journal of Pharmaceutical Investigation, 2013, 43(3): 215–228

    Article  CAS  Google Scholar 

  20. Machmudah S, Kawahito Y, Sasaki M, Goto M. Supercritical CO2 extraction of rosehip seed oil: Fatty acids composition and process optimization. Journal of Supercritical Fluids, 2007, 41(3): 421–428

    Article  CAS  Google Scholar 

  21. Murphy E J. Ionic conduction in hydrogen bonded solids. Annals of the New York Academy of Sciences, 1965, 118(19 Ionic Conduc): 728–738

    Article  Google Scholar 

  22. Pethig R. Dielectric and Electronic Properties of Biological Materials. Chichester: Wiley, 1979

    Google Scholar 

  23. Chan C H, Yusoff R, Ngoh G C, Kung F W L. Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography A, 2011, 1218(37): 6213–6225

    Article  CAS  Google Scholar 

  24. Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 2007, 1(1): 7–18

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Wakte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakte, P., Patil, A., Sachin, B. et al. Optimization of microwave-assisted extraction for picroside I and picroside II from Picrorrhiza kurroa using Box-Behnken experimental design. Front. Chem. Sci. Eng. 8, 445–453 (2014). https://doi.org/10.1007/s11705-014-1458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1458-2

Keywords

Navigation