Skip to main content
Log in

Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A porous Pb foam was fabricated electrochemically at a copper substrate and then used as the cathode for the electroreduction of CO2. The surface morphology and composition of the porous Pb electrode was characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and selected area electron diffraction. The honeycomb-like porous structure was composed of needle-like Pb deposits. Cyclic voltammetry studies demonstrated that the porous Pb electrode had better electrocatalytic performance for the formation of formic acid from CO2 compared with a Pb plate electrode. The increase in current density was due to the large surface area of the porous Pb electrode, which provides more active sites on the electrode surface. The improved formic acid selectivity was due to the morphology of the roughened surface, which contains significantly more low-coordination sites which are more active for CO2 reduction. The highest current efficiency for formic acid was 96.8% at −1.7 V versus saturated calomel electrode at 5 °C. This porous Pb electrode with good catalytic abilities represents a new 3D porous material with applications for the electroreduction of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Enthaler S, von Langermann J, Schmidt T. Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage. Energy & Environmental Science, 2011, 3(9): 1207–1217

    Article  Google Scholar 

  2. Todoroki M, Hara K, Kudo A, Sakata T. Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. Journal of Electroanalytical Chemistry, 1995, 394(1–2): 199–203

    Article  Google Scholar 

  3. Köleli F, Atilan T, Palamut N, Gizir A M, Aydin R, Hamann C H. Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media. Journal of Applied Electrochemistry, 2003, 33(5): 447–450

    Article  Google Scholar 

  4. Machunda R L, Ju H, Lee J. Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode. Current Applied Physics, 2011, 11(4): 986–988

    Article  Google Scholar 

  5. Hara K, Kudo A, Sakata T, Hiramoto M, Watanabe M, Sakata T. Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte. Journal of Electroanalytical Chemistry, 1995, 391(1–2): 141–147

    Article  Google Scholar 

  6. Hara K, Kudo A, Sakata T, Hiramoto M, Watanabe M, Sakata T. Carbon dioxide reduction at low temperature on various metal electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 260(2): 441–445

    Article  Google Scholar 

  7. Tang W, Peterson A A, Varela A S, Jovanov Z P, Bech L, DurandW J, Dahl S, Nørskovb J K, Chorkendorff I. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Physical Chemistry Chemical Physics, 2012, 14(1): 76–81

    Article  CAS  Google Scholar 

  8. Innocent B, Liaigre D, Pasquier D, Ropital F, Léger J M, Kokoh K B. Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. Journal of Applied Electrochemistry, 2009, 39(2): 227–232

    Article  CAS  Google Scholar 

  9. Kwon Y, Lee J. Formic acid from carbon dioxide on nanolayered electrocatalyst. Electrocatalysis, 2010, 1(2–3): 108–115

    Article  CAS  Google Scholar 

  10. Machunda R L, Lee J G, Lee J. Microstructural surface changes of electrodeposited Pb on gas diffusion electrode during electroreduction of gas-phase CO2. Surface and Interface Analysis, 2010, 42(6–7): 564–567

    Article  CAS  Google Scholar 

  11. Köleli F, Balun D. Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium. Applied Catalysis A, General, 2004, 274(1–2): 237–242

    Article  Google Scholar 

  12. Rolison D R, Long J W, Lytle J C, Fischer A E, Rhodes C P, McEvoy T M, Bourg M E, Lubers A M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chemical Society Reviews, 2009, 38(1): 226–252

    Article  CAS  Google Scholar 

  13. Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458(7235): 190–193

    Article  CAS  Google Scholar 

  14. Berube V, Radtke G, Dresselhaus M, Chen G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. International Journal of Energy Research, 2007, 31(6–7): 637–663

    Article  CAS  Google Scholar 

  15. Nishizawa M, Menon V P, Martin C R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science, 1995, 268(5211): 700–702

    Article  CAS  Google Scholar 

  16. Lee J, Sohn K, Hyeon T. Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. Journal of the American Chemical Society, 2001, 123(21): 5146–5147

    Article  CAS  Google Scholar 

  17. Shin H C, Dong J, Liu M. Nanoporous structures prepared by an electrochemical deposition process. Advanced Materials, 2003, 15(19): 1610–1614

    Article  CAS  Google Scholar 

  18. Shin H C, Liu M. Copper foam structures with highly porous nanostructured walls. Chemistry of Materials, 2004, 16(25): 5460–5464

    Article  CAS  Google Scholar 

  19. Li Y, Jia W Z, Song Y Y, Xia X H. Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chemistry of Materials, 2007, 19(25): 5758–5764

    Article  CAS  Google Scholar 

  20. Nam D H, Kim R H, Han D W, Kwon H S. Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries. Electrochimica Acta, 2012, 66: 126–132

    Article  CAS  Google Scholar 

  21. Cherevko S, Chung C H. Impact of key deposition parameters on the morphology of silver foams prepared by dynamic hydrogen template deposition. Electrochimica Acta, 2010, 55(22): 6383–6390

    Article  CAS  Google Scholar 

  22. Xing X L, Cherevko S, Chung C H. Porous Pd films as effective ethanol oxidation electrocatalysts in alkaline medium. Materials Chemistry and Physics, 2011, 126(1–2): 36–40

    Article  CAS  Google Scholar 

  23. Cherevko S, Chung C H. Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution. Electrochemistry Communications, 2011, 13(1): 16–19

    Article  CAS  Google Scholar 

  24. Shin H C, Liu M. Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries. Advanced Functional Materials, 2005, 15(4): 582–586

    Article  CAS  Google Scholar 

  25. Ni Y H, Zhang Y M, Hong J M. Hierarchical Pb microstructures: A facile electrochemical synthesis, shape evolution and influencing factors. CrystEngComm, 2011, 13(3): 934–940

    Article  CAS  Google Scholar 

  26. Nam D H, Kim R H, Han D W, Kim J H, Kwon H S. Effects of (NH4)2SO4 and BTA on the nanostructure of copper foam prepared by electrodeposition. Electrochimica Acta, 2011, 56(22): 9397–9405

    Article  CAS  Google Scholar 

  27. Hori Y. Electrochemical CO2 reduction on metal electrodes. New York: Springer, 2008, 89–189

    Google Scholar 

  28. Kaneco S, Hiei N, Xing Y, Katsumata H, Ohnishi H, Suzuki T, Ohta K. Electrochemical conversion of carbon dioxide to methane in aqueous NaHCO3solution at less than 273 K. Electrochimica Acta, 2002, 48(1): 51–55

    Article  CAS  Google Scholar 

  29. Kaneco S, Iiba K, Ohta K, Mizuno T, Saji A. Electrochemical reduction of CO2 on Au in KOH + methanol at low temperature. Journal of Electroanalytical Chemistry, 1998, 441(1–2): 215–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, H., Han, Z. et al. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Front. Chem. Sci. Eng. 9, 57–63 (2015). https://doi.org/10.1007/s11705-014-1444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1444-8

Keywords

Navigation