Skip to main content
Log in

Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Mesoporous silica particles were prepared for efficient immobilization of the β-glucuronidase (GUS) through a biomimetic mineralization process, in which the solution containing lysozyme and GUS were added into the prehydrolyzed tetraethoxysilane (TEOS) solution. The silica particles were formed in a way of biomineralization under the catalysis of lysozyme and GUS was immobilized into the silica particles simultaneously during the precipitation process. The average diameter of the silica particles is about 200 nm with a pore size of about 4 nm. All the enzyme molecules are tightly entrapped inside the biosilica nanoparticles without any leaching even under a high ionic strength condition. The immobilized GUS exhibits significantly higher thermal and pH stability as well as the storage and recycling stability compared with GUS in free form. No loss in the enzyme activity of the immobilized GUS was found after 30-day’s storage, and the initial activity could be well retained after 12 repeated cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee C H, Lin T S, Mou C Y. Mesoporous materials for encapsulating enzymes. Nano Today, 2009, 4(2): 165–179

    Article  CAS  Google Scholar 

  2. Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature, 2001, 409(6817): 258–268

    Article  CAS  Google Scholar 

  3. Bornscheuer U T. Immobilizing enzymes: How to create more suitable biocatalysts. Angewandte Chemie International Edition, 2003, 42(29): 3336–3337

    Article  CAS  Google Scholar 

  4. Eggers D K, Valentine J S. Molecular confinement influences protein structure and enhances thermal protein stability. Protein Science, 2008, 10(2): 250–261

    Article  Google Scholar 

  5. Kim J, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chemical Engineering Science, 2006, 61(3): 1017–1026

    Article  CAS  Google Scholar 

  6. Pioselli B, Bettati S, Mozzarelli A. Confinement and crowding effects on tryptophan synthase α 2 β 2 complex. FEBS Letters, 2005, 579(10): 2197–2202

    Article  CAS  Google Scholar 

  7. Reátegui E, Aksan A. Structural changes in confined lysozyme. Journal of biomechanical engineering, 2009, 131(7): 074520.1–074520.4

    Article  Google Scholar 

  8. Zhou H X. Protein folding in confined and crowded environments. Archives of Biochemistry and Biophysics, 2008, 469(1): 76–82

    Article  CAS  Google Scholar 

  9. Zhou H X. Protein folding and binding in confined spaces and in crowded solutions. Journal of Molecular Recognition, 2004, 17(5): 368–375

    Article  CAS  Google Scholar 

  10. Zhou H X, Dill K A. Stabilization of proteins in confined spaces. Biochemistry, 2001, 40(38): 11289–11293

    Article  CAS  Google Scholar 

  11. Avnir D, Coradin T, Lev O, Livage J. Recent bio-applications of solgel materials. Journal of Materials Chemistry, 2006, 16(11): 1013–1030

    Article  CAS  Google Scholar 

  12. Kim Y H, Lee I, Choi S H, Lee O K, Shim J, Lee J, Kim J, Lee E Y. Enhanced stability and reusability of marine epoxide hydrolase using ship-in-a-bottle approach with magnetically-separable mesoporous silica. Journal of Molecular Catalysis. B, Enzymatic, 2013, 89: 48–51

    Article  CAS  Google Scholar 

  13. Pastor I, Ferrer M L, Lillo M P, Gómez J, Mateo C R. Structure and dynamics of lysozyme encapsulated in a silica sol-gel matrix. Journal of Physical Chemistry B, 2007, 111(39): 11603–11610

    Article  CAS  Google Scholar 

  14. Khanna S, Goyal A, Moholkar V S. Mechanistic investigation of ultrasonic enhancement of glycerol bioconversion by immobilized clostridium pasteurianum on silica support. Biotechnology and Bioengineering, 2013, 110(6): 1637–1645

    Article  CAS  Google Scholar 

  15. Luckarift H R, Spain J C, Naik R R, Stone M O. Enzyme immobilization in a biomimetic silica support. Nature Biotechnology, 2004, 22(2): 211–213

    Article  CAS  Google Scholar 

  16. Pouget E, Dujardin E, Cavalier A, Moreac A, Valéry C, Marchi-Artzner V, Weiss T, Renault A, Paternostre M, Artzner F. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Materials, 2007, 6(6): 434–439

    Article  CAS  Google Scholar 

  17. Rusu V M, Ng C H, Wilke M, Tiersch B, Fratzl P, Peter M G. Sizecontrolled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials, 2005, 26(26): 5414–5426

    Article  CAS  Google Scholar 

  18. Zhang Y F, Wu H, Li L, Li J, Jiang Z Y, Jiang Y J, Chen Y. Enzymatic conversion of baicalin into baicalein by β-glucuronidase encapsulated in biomimetic core-shell structured hybrid capsules. Journal of Molecular Catalysis. B, Enzymatic, 2009, 57(1–4): 130–135

    Article  CAS  Google Scholar 

  19. Naik R R, Tomczak M M, Luckarift H R, Spain J C, Stone M O. Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. Chemical Communications, 2004, (15): 1684–1685

    Google Scholar 

  20. Miller S A, Hong E D, Wright D. Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite. Macromolecular Bioscience, 2006, 6(10): 839–845

    Article  CAS  Google Scholar 

  21. Zhang Y F, Wu H, Li J, Li L, Jiang Y J, Jiang Z Y, Jiang Z. Protamine-templated biomimetic hybrid capsules: Efficient and stable carrier for enzyme encapsulation. Chemistry of Materials, 2008, 20(3): 1041–1048

    Article  CAS  Google Scholar 

  22. Naik R R, Brott L L, Clarson S J, Stone M O. Silica-precipitating peptides isolated from a combinatorial phage display peptide library. Journal of Nanoscience and Nanotechnology, 2002, 2(1): 95–100

    Article  CAS  Google Scholar 

  23. Kroger N, Deutzmann R, Sumper M. Silica-precipitating peptides from diatoms. Journal of Biological Chemistry, 2001, 276(28): 26066–26070

    Article  CAS  Google Scholar 

  24. Luckarift H R, Dickerson M B, Sandhage K H, Spain J C. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small, 2006, 2(5): 640–643

    Article  CAS  Google Scholar 

  25. Coradin T, Coupé A, Livage J. Interactions of bovine serum albumin and lysozyme with sodium silicate solutions. Colloids and Surfaces. B, Biointerfaces, 2003, 29(2–3): 189–196

    Article  CAS  Google Scholar 

  26. Shiomi T, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K. Synthesis of a cagelike hollow aluminosilicate with vermiculate micro-through-holes and its application to ship-in-bottle encapsulation of protein. Small, 2009, 5(1): 67–71

    Article  CAS  Google Scholar 

  27. Ramanathan M, Luckarift H R, Sarsenova A, Wild J R, Ramanculov E K, Olsen E V, Simonian A L. Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications. Colloids and Surfaces. B, Biointerfaces, 2009, 73(1): 58–64

    Article  CAS  Google Scholar 

  28. Garakani T M, Wang H H, Krappitz T, Liebeck B M, Vanrijn P, Boker A. Lysozyme-silica hybrid materials: From nanoparticles to capsules and double emulsion mineral capsules. Chemical Communications, 2012, 48(82): 10210–10212

    Article  CAS  Google Scholar 

  29. Ivnitski D, Artyushkova K, Rincon R A, Atanassov P, Luckarift H R, Johnson G R. Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: Glucose oxidase-catalyzed direct electron transfer. Small, 2008, 4(3): 357–364

    Article  CAS  Google Scholar 

  30. Luckarift H R, Balasubramanian S, Paliwal S, Johnson G R, Simonian A L. Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids and Surfaces. B, Biointerfaces, 2007, 58(1): 28–33

    Article  CAS  Google Scholar 

  31. Cao X D, Yu J C, Zhang Z Q, Liu S Q. Bioactivity of horseradish peroxidase entrapped in silica nanospheres. Biosensors & Bioelectronics, 2012, 35(1): 101–107

    Article  CAS  Google Scholar 

  32. Cushnie T, Lamb A J. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 2005, 26(5): 343–356

    Article  CAS  Google Scholar 

  33. Ma Z, Otsuyama K i, Liu S, Abroun S, Ishikawa H, Tsuyama N, Obata M, Li F J, Zheng X, Maki Y. Baicalein, a component of scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood, 2005, 105(8): 3312–3318

    Article  CAS  Google Scholar 

  34. Zhu J T, Choi R C, Chu G K, Cheung A W, Gao Q T, Li J, Jiang Z Y, Dong T T, Tsim KW. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventing β-amyloid-induced cell death. Journal of Agricultural and Food Chemistry, 2007, 55(6): 2438–2445

    Article  CAS  Google Scholar 

  35. Matte C R, Nunes M R, Benvenutti E V, Schöffer J N, AyubM A Z, Hertz P F. Schöffer J d N, Ayub M A Z, Hertz P F. Characterization of cyclodextrin glycosyltransferase immobilized on silica microspheres via aminopropyltrimethoxysilane as a “spacer arm”. Journal of Molecular Catalysis. B, Enzymatic, 2012, 78: 51–56

    Article  CAS  Google Scholar 

  36. Martín M T, Plou F J, Alcalde M, Ballesteros A. Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst. Journal of Molecular Catalysis. B, Enzymatic, 2003, 21(4–6): 299–308

    Article  Google Scholar 

  37. Miller S A, Hong E D, Wright D. Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite. Macromolecular Bioscience, 2006, 6(10): 839–845

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Jiang, Z., Li, L. et al. Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability. Front. Chem. Sci. Eng. 8, 353–361 (2014). https://doi.org/10.1007/s11705-014-1421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1421-2

Keywords

Navigation