Skip to main content
Log in

Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts

  • Communication Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The photocatalytic hydrogen production from aqueous methanol solution using titanium dioxide (TiO2) was investigated in the addition of metal particles including copper, lead, tin, and zinc. The results show that only the addition of copper particles enhances the hydrogen production. The copper usage and reaction temperature were further optimized for TiO2/Cu photocatalyts. Under the optimal conditions, the hydrogen production using TiO2/Cu as photocatalysts is approximately 68 times higher than that obtained with only TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yu J, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. Journal of Physical Chemistry C, 2011, 115(11): 4953–4958

    Article  CAS  Google Scholar 

  2. Cuberio M L, Fierro J L G. Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A, General, 1998, 168(2): 307–322

    Article  Google Scholar 

  3. Agrell J, Hasselbo K, Jansson K, Jaras S G, Boutonnet M. Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique. Applied Catalysis A, General, 2001, 211(2): 239–250

    Article  CAS  Google Scholar 

  4. de Wild P J, Verhaak M J F M. Catalytic production of hydrogen from methanol. Catalysis Today, 2000, 60(1–2): 3–10

    Article  Google Scholar 

  5. Shishdo T, Yamamoto Y, Morioka H, Takehira K. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis A Chemical, 2007, 268(1–2): 185–194

    Article  Google Scholar 

  6. Wu G S, Wang L C, Liu Y M, Cao Y, Dai W L, He H Y, Fan K N. Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts. Applied Surface Science, 2006, 253(2): 974–982

    Article  CAS  Google Scholar 

  7. Murcia-Mascardos S, Navarro R M, Gomez-Sainero L, Costantino U, Nocchetti M, Fierro J L G. Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors. Journal of Catalysis, 2001, 198(2): 338–347

    Article  Google Scholar 

  8. Wu N L, Lee MS. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 2004, 29(15): 1601–1605

    Article  CAS  Google Scholar 

  9. Yang X, Salzmann C, Shi H, Wang H, Green M L H, Xiao T. The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution. Journal of Physical Chemistry A, 2008, 112(43): 10784–10789

    Article  CAS  Google Scholar 

  10. Lin W C, Yang W D, Huang I L, Wu T S, Chung Z J. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst. Energy & Fuels, 2009, 23(4): 2192–2196

    Article  CAS  Google Scholar 

  11. Yu J, Qi L, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. Journal of Physical Chemistry C, 2010, 114(30): 13118–13125

    Article  CAS  Google Scholar 

  12. Nguyen V N H, Amal R, Beydoun D. Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chemical Engineering Science, 2003, 58(19): 4429–4439

    Article  CAS  Google Scholar 

  13. Pan P W, Chen Y W. Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 2007, 8(10): 1546–1549

    Article  CAS  Google Scholar 

  14. Kaneco S, Rahman M A, Suzuki T, Katsumata H, Ohta K. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of Photochemistry and Photobiology A Chemistry, 2004, 163(3): 419–424

    Article  CAS  Google Scholar 

  15. Li M, Li Y, Peng S, Lu G, Li S. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2. Frontiers of Chemistry in China, 2009, 4(1): 32–38

    Article  Google Scholar 

  16. Korzhak A V, Ermokhina N I, Stroyuk A L, Bukhtiyarov V K, Raevskaya A E, Litvin V I, Kuchmiy Y S, Ilyin V G, Manorik P A. Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. Journal of Photochemistry and Photobiology A Chemistry, 2008, 198(2–3): 126–134

    Article  CAS  Google Scholar 

  17. Maeda K, Domen K. Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655–2661

    Article  CAS  Google Scholar 

  18. Miwa T, Kaneco S, Katsumata H, Suzuki T, Ohta K, Verma S C. Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. International Journal of Hydrogen Energy, 2010, 35(13): 6554–6560

    Article  CAS  Google Scholar 

  19. Takai A, Kamat P V. Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. ACS Nano, 2011, 5(9): 7369–7376

    Article  CAS  Google Scholar 

  20. Furukawa S, Tsukio D, Shishido T, Teramura K, Tanaka T. Correlation between the oxidation state of copper and the photocatalytic activity of Cu/Nb2O5. Journal of Physical Chemistry C, 2012, 116(22): 12181–12186

    Article  CAS  Google Scholar 

  21. Chen T, Feng Z C, Wu G P, Shi J Y, Ma G J, Ying P L, Li C. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. Journal of Physical Chemistry C, 2007, 111(22): 8005–8014

    Article  CAS  Google Scholar 

  22. Sandoval M J, Bell A T. Temperature-programmed desorption studies of the interactions of H2, CO, and CO2 with Cu/SiO2. Journal of Catalysis, 1993, 144(1): 227–237

    Article  CAS  Google Scholar 

  23. Kovalenko A, Hirata F. Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model. Journal of Chemical Physics, 1999, 110(20): 10095–10112

    Article  CAS  Google Scholar 

  24. Zhanpeisov N U, Miyamoto A. Interactions of water and methanol with a mixture of copper and zinc metals: A theoretical ab initio study. Research on Chemical Intermediates, 2003, 29(4): 417–428

    Article  CAS  Google Scholar 

  25. Bi Y, Lu G. Nano-Cu catalyze hydrogen production from formaldehyde solution at room temperature. International Journal of Hydrogen Energy, 2008, 33(9): 2225–2232

    Article  CAS  Google Scholar 

  26. McBride F, Darling R, Pussi K, Hodgson A. Tailoring the structure of water at a metal surface: A structural analysis of the water bilayer formed on an alloy template. Physical Review Letters, 2011, 106(22): 226101–226105

    Article  Google Scholar 

  27. Sreethawong T, Yoshikawa S. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au loaded mesoporous TiO2 photocatalysts. Catalysis Communications, 2005, 6(10): 661–668

    Article  CAS  Google Scholar 

  28. Wu N L, Lee M S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 2004, 29(15): 1601–1605

    Article  CAS  Google Scholar 

  29. Bandara J, Udawatta C P K, Rajapakse C S K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochemical & Photobiological Sciences, 2005, 4(11): 857–861

    Article  CAS  Google Scholar 

  30. Choi H J, Kang M. Hydrogen production from methanol/waterdecomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. International Journal of Hydrogen Energy, 2007, 32(16): 3841–3848

    Article  CAS  Google Scholar 

  31. Lawton T J, Carrasco J, Baber A E, Michaelidesc A, Charles E, Sykes H. Hydrogen-bonded assembly of methanol on Cu(111). Physical Chemistry Chemical Physics, 2012, 14(33): 11846–11852

    Article  CAS  Google Scholar 

  32. Gunther S, Havecker M, Knop-Gericke A, Kleimenov E, Schlog R. Adsorbate coverages and surface reactivity in methanol oxidation over Cu (110): An in situ photoelectron spectroscopy study. The Journal of Chemical Physics, 2006, 125(11): 114709(1–10)

    Article  Google Scholar 

  33. Lide D R. CRC Handbook of Chemistry and Physics. 85th edition. Florida: CRC Press, 2005, 4–160, 9–76, 10–169

    Google Scholar 

  34. Michaelson H B. The work function of the elements and its periodicity. Journal of Applied Physics, 1977, 48(11): 4729–4733

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paramasivan Gomathisankar or Satoshi Kaneco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomathisankar, P., Noda, T., Katsumata, H. et al. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts. Front. Chem. Sci. Eng. 8, 197–202 (2014). https://doi.org/10.1007/s11705-014-1417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1417-y

Keywords

Navigation