Skip to main content
Log in

Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Among the semiconductors, titanium dioxide has been identified as an effective photocatalyst due to its abundance, low cost, stability, and superior electronic energy band structure. Highly ordered nanotube arrays of titania were produced by anodization and mild sonication. The band gap energy of the titania nanotube arrays was reduced to 2.6 eV by co-doping with Fe, C, N atoms using an electrolyte solution containing K3Fe(CN)6. The photoconversion of phenol in a batch photoreactor increased to more than 18% based on the initial concentration of phenol by using a composite nanomaterial consisting of titania nanotube arrays and Pt/ZIF-8 nanoparticles. A layer-by-layer assembly technique for the deposition of titania nanoparticles was developed to fabricate air filters for the degradation of trace amounts of toluene in the air and preparation of superhyrophobic surfaces for oil-water separation and anti-corrosion surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams D M, Brus L, Chidsey C E D, Creager S, Creutz C, Kagan C R, Kamat P V, Lieberman M, Lindsay S, Marcus R A, Metzger R M, Michel-Beyerle M E, Miller J R, Newton M D, Rolison D R, Sankey O, Schanze K S, Yardley J, Zhu X. Charge transfer on the nanoscale: current status. Journal of Physical Chemistry. B, 2003, 107(28): 6668–6697

    Article  CAS  Google Scholar 

  2. Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry, 1996, 100(31): 13226–13239

    Article  CAS  Google Scholar 

  3. Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933–937

    Article  CAS  Google Scholar 

  4. Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3): 735–758

    Article  CAS  Google Scholar 

  5. Nakamura R, Ohashi N, Imanishi A, Osawa T, Matsumoto Y, Koinuma H, Nakato Y. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO(2) (rutile) surfaces. Journal of Physical Chemistry B, 2005, 109(5): 1648–1651

    Article  CAS  Google Scholar 

  6. Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. Journal of Physical Chemistry. B, 2005, 109(35): 16579–16586

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

    Article  CAS  Google Scholar 

  8. Paulose M, Mor G K, Varghese O K, Shankar K, Grimes C A. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. Journal of Photochemistry and Photobiology. A, 2006, 178(1): 8–15

    Article  CAS  Google Scholar 

  9. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces. Nature, 1997, 388(6641): 431–432

    Article  CAS  Google Scholar 

  10. Yoriya S, Prakasam H E, Varghese O K, Shankar K, Paulose M, Mor G K, Latempa T J, Grimes C A. Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 m to 222 m in length. Sensors Letters, 2006, 4(3): 334–339

    Article  CAS  Google Scholar 

  11. Ngamsinlapasasathian S, Sakulkhaemaruethai S, Pavasupree S, Kitiyanan A, Sreethawong T, Suzuki Y, Yoshikawa S. Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. Journal of Photochemistry and Photobiology. A, 2004, 164(1–3): 145–151

    Article  Google Scholar 

  12. Hoyer P. Formation of a titanium dioxide nanotube array. Langmuir, 1996, 12(6): 1411–1413

    Article  CAS  Google Scholar 

  13. Lakshmi B B, Dorhout P K, Martin C R. Sol-gel template synthesis of semiconductor nanostructures. Chemistry of Materials, 1997, 9 (3): 857–862

    Article  CAS  Google Scholar 

  14. Zhang M, Brando Y, Wada K. Sol-gel template preparation of TiO2 nanotubues and nanorodes. Journal of Materials Science Letters, 2001, 20(2): 167–170

    Article  CAS  Google Scholar 

  15. Bavykin D V, Parmon V N, Lapkin A A, Walsh F C. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 2004, 14(22): 3370–3377

    Article  CAS  Google Scholar 

  16. Ou H H, Lo S L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology, 2007, 58(1): 179–191

    Article  CAS  Google Scholar 

  17. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 1999, 27(7): 629–637

    Article  CAS  Google Scholar 

  18. Frank A J, Kopidakis N. And de Lagemaat, J. V. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coordination Chemistry Reviews, 2004, 248: 1165–1179

    Article  CAS  Google Scholar 

  19. Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459

    Article  CAS  Google Scholar 

  20. Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218

    Article  CAS  Google Scholar 

  21. Cao F, Oskam G, Meyer G J, Searson P C. Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells. Journal of Physical Chemistry, 1996, 100(42): 17021–17027

    Article  CAS  Google Scholar 

  22. Vanmaekelbergh D, Vanmaekelbergh D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Physical Review Letters, 1996, 77(16): 3427–3430

    Article  Google Scholar 

  23. Wahl A, Ulmann M, Carroy A, Augustynski J. Highly selective photo-oxidation reactions at nanocrystalline TiO2 film electrodes. Journal of the Chemical Society, Chemical Communications, 1994, 2277–2278

  24. Santato C, Ulmann M, Augustynski J. Photoelectrochemical properties of nanostructured tungsten trioxide films. Journal of Physical Chemistry B, 2001, 105(5): 936–940

    Article  CAS  Google Scholar 

  25. Adachi M, Murata Y, Okada I, Yoshikawa S. Formation of titania nanotubes and applications for dye-sensitized solar cells. Journal of the Electrochemical Society, 2003, 150(8): G488–G493

    Article  CAS  Google Scholar 

  26. Rao C N R, Govindaraj A. Nanotubes and Nanowires. Cambridge, UK: The Royal Society of Chemistry, 2005

    Google Scholar 

  27. Paulose M, Shankar K, Varghese O K, Mor G K, Grimes C A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. Journal of Physics. D, Applied Physics, 2006, 39(12): 2498–2503

    Article  CAS  Google Scholar 

  28. Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters, 2006, 6(1): 24–28

    Article  CAS  Google Scholar 

  29. Mohamed A, Rohani S. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy &. Environmental Sciences, 2011, 4: 1065–1086

    Article  CAS  Google Scholar 

  30. Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 2001, 16(12): 3331–3334

    Article  CAS  Google Scholar 

  31. Macák J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Edition, 2005, 44(14): 2100–2102

    Article  Google Scholar 

  32. Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2 − x)Bx under visible irradiation. Journal of the American Chemical Society, 2004, 126(15): 4782–4783

    Article  CAS  Google Scholar 

  33. Isimjan T T, Yang D Q, Rohani S, Ray A K. An innovative approach to synthesize highly-ordered TiO2 nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11(2): 1079–1083

    Article  CAS  Google Scholar 

  34. Cai Q, Yang L, Yu Y. Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid Films, 2006, 515(4): 1802–1806

    Article  CAS  Google Scholar 

  35. Wang H, Yip C T, Cheung K Y, Djurisic A B, Xie MH, Leung Y H, Chen W K. Titania-nanotube-array-based photovoltaic cells. Applied Physics Letters, 2006, 89: 023508,1–3

    Google Scholar 

  36. Deng L, Wang S, Liu D, Zhu B, Huang W, Wu S, Zhang S. Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catalysis Letters, 2009, 129(3–4): 513–518

    Article  CAS  Google Scholar 

  37. Zaleska A. Doped-TiO2: a review. Recent Patents on Engineering, 2008, 2(3): 157–164

    Article  CAS  Google Scholar 

  38. Pedraza-Avela J A, López R, Martínez-Ortega F, Páez-Mozo E A, Gómez R. Effect of chromium doping on visible light absorption of nanosized titania sol-gel. Journal of Nano Research, 2009, 5: 95–104

    Article  Google Scholar 

  39. Lei L, Su Y, Zhou M, Zhang X, Chen X. Fabrication of multi-nonmetal-doped TiO2 nanotubes by anodization in mixed acid electrolyte. Materials Research Bulletin, 2007, 42(12): 2230–2236

    Article  CAS  Google Scholar 

  40. Isimjan T T, Ruby A E, Rohani S, Ray A K. The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes. Nanotechnology, 2010, 21(5): 055706

    Article  Google Scholar 

  41. Isimjan T T, Kazemian H, Rohani S, Ray A K. Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes. Journal of Materials Chemistry, 2010, 20(45): 10241–10245

    Article  CAS  Google Scholar 

  42. Wang T, Isimjan T, Chen J, Rohani S. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties. Nanotechnology, 2011, 22(26): 265708/1–265708/7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rohani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohani, S., Isimjan, T., Mohamed, A. et al. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles. Front. Chem. Sci. Eng. 6, 112–122 (2012). https://doi.org/10.1007/s11705-011-1144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-011-1144-6

Keywords

Navigation