Skip to main content
Log in

Induced mutations in chickpea-morphological mutants

  • Research Article
  • Published:
Frontiers of Agriculture in China

Abstract

Seeds of two varieties (PUSA-212 and BG-256) of chickpea (Cicer arietinum L.) were treated with 0.03% concentration of hydrazine hydrate (HZ), methylmethane sulphonate (MMS) and sodium azide (SA) for 6 h. The M2 generation was grown from single plant M1 progeny seeds. Five morphological mutants (dwarf, bushy, one sided branch, narrow leaf and gigas) were isolated in M2 generation. Some of these mutants may be directly used in selection whereas some are useful in combination breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad S, Godward M B E (1993). Gamma radiation induced mutations in Cicer arietinum L. Acta Botanica Indica, 21: 1–8

    Google Scholar 

  • Argikar G P (1952). Occurrence and inheritance of Filicoid form in Cicer arietinum L. Curr Sci, 21: 76

    Google Scholar 

  • Argikar G P, D’Cruz R (1963). Genetic studies in gram. Journal of Indian Botanical Society, 42: 401–405

    Google Scholar 

  • Arulbalachandran D, Mullainathan L (2009). Chlorophyll and morphological mutants of blackgram (Vigna mungo (L.) Hepper) derived by gamma rays and EMS. J Phytol, 1(4): 236–241

    Google Scholar 

  • Athwal D S (1963). Some x-ray induced and spontaneous mutations in Cicer. Indian Journal of Genetics and Plant Breeding, 23: 50–57

    Google Scholar 

  • Bahl P N (1987). Cytology of chickpea. In: Saxena M C, Singh K B, eds. The Chickpea. Willingford, England: CAB International, 830–887

    Google Scholar 

  • Chaudhary B B, Argikar G P (1957). Occurrence and inheritance of the fasciculifolia form in Cicer arietinum L. Curr Sci, 26: 395–396

    Google Scholar 

  • Davis L A, Addicott F T (1972). Abscisic Acid: correlations with abscission and with development in the cotton fruit. Plant Physiol, 49(4): 644–648

    Article  PubMed  CAS  Google Scholar 

  • Davis T M, Foster K W, Phillips D A (1985). Nodulation mutants in chickpea. Crop Sci, 25: 345–348

    Article  Google Scholar 

  • Davis T M, Matthews L J, Fagerberg W R (1990). Comparison of tetraploid and single gene induced gigas variants in chickpea (Cicer arietinum) I. Origin and genetic characterization. American Journal of Botany, 77(3): 295–299

    Article  Google Scholar 

  • Ekbote R B (1937). Mutations in gram (Cicer arietinum L.). Curr Sci, 5: 648–649

    Google Scholar 

  • FAO (2002). Statistical Databases. http://www.sciencedirect.com/science

  • Gaur P M, Gour V K (2003). Broad-few-leaflets and outwardly curved wings: two new mutants of chickpea. Plant Breed, 122(2): 192–194

    Article  Google Scholar 

  • Hedens P (2003). The genes of the green revolution. Trends Genet, 19(1): 5–9

    Article  Google Scholar 

  • Jeswani L M (1986). Breeding strategies for the improvement of pulse crops. Indian Journal of Genetics and Plant Breeding, 46(Suppl): 267–280

    Google Scholar 

  • Khan M H, Tyagi S D (2010). Induced morphological mutants in soybean (Gylcine max (L.) Merrill). Front Agric China, 4(2): 175–180

    Article  Google Scholar 

  • Khan S, Wani M R, Bhat M D, Parveen K (2004). Induction of morphological mutants in chickpea. International Chickpea and Pigeonpea Newsletter, 11: 6–7

    Google Scholar 

  • Kleinhofs A, Warne R L, Muehlbauer F S, Nilan R (1978). Induction and selection of specific gene mutation in Hordeum and Pisum. Mutation Research, 51(1): 29–35

    CAS  Google Scholar 

  • Konzak C F, Woo S C, Dickey J (1969). An induced dominant semi dwarf plant height mutation in spring wheat. Wheat Information Service, 28: 10

    Google Scholar 

  • Micke A (1988). Genetic improvement of food legumes in developing countries by mutation induction. In: Summer field R J, ed. World Crops: Cool Season Food Legumes. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1031–1047

    Google Scholar 

  • Naik B S, Singh B, Kole C (2002). A promising mungbean (Vigna radiata (L.) Wilczek) genotype with high protein content and seed yield. Indian Journal of Genetics and Plant Breeding, 62(4): 342–344

    Google Scholar 

  • Nevers P, Shepherd N, Saedler H (1986). Plant transposable elements. Adv Bot Res, 12: 103–203

    Article  CAS  Google Scholar 

  • Patil J A (1959). Inheritance study in gram. Curr Sci, 28: 508

    Google Scholar 

  • Peterson P A (1986). Mobile elements in maize. Plant Breed Rev, 4: 82–122

    Google Scholar 

  • Pundir R P S, Reddy G V (1998). Two new traits — open flower and small leaf in chickpea (Cicer arietinum L.). Euphytica, 102(3): 357–361

    Article  Google Scholar 

  • Pundir R P S, Mengesha M H, Reddy K N (1990). Leaf types and their genetics in chickpea (Cicer arietinum L.). Euphytica, 45:197–200

    Google Scholar 

  • Reddy V R K, Gupta P K (1988). Induced mutations in hexaploid triticale. Frequency and spectrum of morphological mutants. Genet Agr, 42: 241–254

    Google Scholar 

  • Rekha K, Kak S N, Langer A (2000). EMS induced variability in Artemisia pallens Wall. Indian Journal of Plant Genet Resour, 13(1): 37–41

    Google Scholar 

  • Rubio J, Flores F, Moreno M T, Cubero J I, Gil J (2004). Effects of the erect/bushy habit single/double pod and late /early flowering genes on yield and seed size and their stability in chickpea. Field Crops Research, 90(2–3): 255–262

    Article  Google Scholar 

  • Shakoor A, Sadiq M S, Hasan M U, Saleem M (1978). Selection for useful semidwarf mutants through induced mutations in bread wheat. Proc 5th Int Wheat Genet Symp, New Delhi, Vol I, Feb 23–28: 540–546

    Google Scholar 

  • Shimizu-Sato S, Mori H (2001). Control of outgrowth and dormancy in axillary buds. Plant Physiol, 127(4): 1405–1413

    Article  PubMed  CAS  Google Scholar 

  • Singh H B, Bhagchandani P M (1953). Genetics of leaf mutations in gram. Indian Journal of Genetics and Plant Breeding, 13: 106–109

    Google Scholar 

  • Solanki I S, Sharma B (2002). Induced polygenic variability in different groups of mutagenic damage in lentil (Lens culinaris Medik). Indian Journal of Genetics and Plant Breeding, 62(2): 135–139

    Google Scholar 

  • Stebbins L G (1971). Chromosomal evolution in higher plants. Addison Wesley Reading M A

  • Suganthy C P, Reddy V R K, Edwin R (1994). Mutation breeding in some cereals IV. Biological parameters. Adv Plant Sci, 7: 1–11

    Google Scholar 

  • Toker C, Cagirgan M I (2004). Spectrum and frequency of induced mutations in chickpea. International Chickpea and Pigeonpea Newsletter, 11: 8–10

    Google Scholar 

  • Varshney R K, Siddiqui B A (1997). Effects of thiourea in M1 generation of bread wheat (Triticum aestivum L.). Journal of Indian Botanical Society, 76: 165–168

    Google Scholar 

  • Wani R (2007). Studies on the induction of mutations in mungbean (Vigna radiata (L.) Wilczek).Ph. D. thesis, Aligarh Muslim University, Aligarh

    Google Scholar 

  • Weber E, Gottschalk W (1973). Die Beziehungen Zwischen Zellgrobe und Internodienlange bei Strahleninduzierten Pisum. Mutanten Beitr Biol Pfl, 49: 101–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiullah Khan.

About this article

Cite this article

Khan, S., Parveen, K. & Goyal, S. Induced mutations in chickpea-morphological mutants. Front. Agric. China 5, 35–39 (2011). https://doi.org/10.1007/s11703-011-1050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-011-1050-1

Keywords

Navigation