Skip to main content
Log in

Current progress on genetic interactions of rice with rice blast and sheath blight fungi

  • Review
  • Published:
Frontiers of Agriculture in China

Abstract

Analysis of genetic interactions between rice and its pathogenic fungi Magnaporthe oryzae and Rhizoctonia solani should lead to a better understanding of molecular mechanisms of host resistance, and the improvement of strategies to manage rice blast and sheath blight diseases. Currently, dozens of rice resistance (R) genes against specific races of the blast fungus have been described. Among them, ten were molecularly characterized and some were widely used for breeding for genetic resistance. The Pi-ta gene was one of the best characterized rice R genes. Following the elucidation of its molecular structure, interaction, distribution, and evolution, user friendly DNA markers were developed from portions of the cloned genes to facilitate the incorporations of the Pi-ta mediated resistance into improved rice varieties using marker assisted selection (MAS). However, rice blast is still a major threat for stable rice production because of race change mutations occurring in rice fields, which often overcome added resistance based on single R genes, and these virulent races of M. oryzae pose a continued challenge for blast control. For sheath blight, progress has been made on the exploration of novel sources of resistance from wild rice relatives and indica rice cultivars. A major quantitative trait locus (QTL), named qSB9-2, was recently verified in several mapping populations with different phenotyping methods, including greenhouse methods. The ability to identify qSB9-2 using greenhouse methods should accelerate the efforts on the qSB9-2 fine mapping and positional cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008). Two adjacent nucleotide-binding siteleucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 180: 2267–2276

    Article  PubMed  CAS  Google Scholar 

  • Ballini E, Morel J B, Droc G, Price A, Courtois B, Notteghem J L, Tharreau D (2008). A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact, 21: 859–868

    Article  PubMed  CAS  Google Scholar 

  • Bohnert H U, Fudal I, Dioh W, Tharreau D, Notteghem J L, Lebrun, MH (2004). A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell, 16: 2499–2513

    Article  PubMed  Google Scholar 

  • Bowen P, Menzies J, Ehret D (1992). Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science, 117: 906–912

    CAS  Google Scholar 

  • Brooks S A (2007). Sensitivity to a host-selective toxin from Rhizoctonia solani correlates with sheath blight susceptibility in rice. Phytopathology, 97: 1207–1212

    Article  PubMed  CAS  Google Scholar 

  • Bryan G T, Wu K, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B (2000). A single amino acid difference distinguishes resistant and susceptible alleles of rice blast resistance gene Pi-ta. Plant Cell, 12: 2033–2045

    Article  PubMed  CAS  Google Scholar 

  • Che K P, Zhan Q C, Xing Q H, Wang Z P, Jin D M, He D J, Wang B (2003). Tagging and mapping of rice sheath blight resistance gene. Theor Appl Genet, 106: 293–297

    PubMed  CAS  Google Scholar 

  • Chen C Q, Belanger R R, Benhamous N, Paulitz T C (1998). Induced systemic resistance by Pseudomonas spp. impairs pre-and postinfection development of Pythium aphanidermatum on cucumber roots. Eur J Plant Pathol, 104: 877–886

    Google Scholar 

  • Chen X W, Shang J J, Chen D X, Lei C L, Zou Y, Zhai W X, Liu G Z, Xu J C, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 46: 794–804

    Article  PubMed  CAS  Google Scholar 

  • Dann E K, Deverall B J (1995). Effectiveness of systemic resistance in bean against foliar and soilborne pathogens as induced by biological and chemical means. Plant Pathol, 44: 458–466

    Article  Google Scholar 

  • Dioh W, Tharreau D, Notteghem J L, Orbach M, Lebrun M H (2000). Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Mol Plant-Microbe Interact, 13: 217–227

    Article  PubMed  CAS  Google Scholar 

  • Eizenga G C, Agama H A, Lee F N, Jia Y (2006). Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 46: 1870–1878

    Article  CAS  Google Scholar 

  • Eizenga G C, Agrama H A, Lee F N, Jia Y (2009). Exploring genetic diversity and potential novel disease resistance genes in a collection of rice wild relatives. Genet Resour Crop Evol, 56: 65–76

    Article  CAS  Google Scholar 

  • Farman M L, Leong S A (1998). Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: Discrepancy between the physical and genetic maps. Genetics, 150: 1049–1058

    PubMed  CAS  Google Scholar 

  • Fjellstrom R G, Conaway-Bormans C A, McClung AM, Marchetti MA, Shank A R, Park WD (2004). Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci, 44: 1790–1798

    CAS  Google Scholar 

  • Flor H H (1971). Current status of the gene-for-gene concept. Annu Rev Phytopathol, 9: 275–296

    Article  Google Scholar 

  • Gibbons J W, Moldenhauer K A K, Gravois K A, Lee F N, Bernhardt J L, Meullenet J F, Bryant R J, Anders M, Norman R J, Cartwright K, Taylor K, Bullock J, Blocker M M (2006). Registration of ‘Cybonnet’ Rice. Crop Sci, 46: 2317–2318

    Article  Google Scholar 

  • Gravois K A, Moldenhauer K A K, Lee F N, Norman R J, Helms R S, Bernhardt J L, Wells B R, Dilday R H, Rohman P C, Blocker M M (1995). Registration of ‘Kaybonnet’ rice. Crop Sci, 35: 586–587

    Google Scholar 

  • Han Y P, Xing Y Z, Chen Z X, Gu S L, Pan X B, Chen X L, Zhang Q F (2002). Mapping QTL for horizontal resistance to sheath blight in an elite restorer line Minghui 63. Chin J Genet, 29: 622–626 (in Chinese)

    CAS  Google Scholar 

  • Hayashi K, Yoshida H (2009). Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 57: 413–425

    Article  PubMed  CAS  Google Scholar 

  • Howard R, Ferrari J, Roach M A, Roach D H, Money N P (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA, 88: 11281–11284

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Bryan G, Farrall L, Valent B (2003). Natural variation at the Pi-ta rice blast resistance locus. Phytopathology, 93: 1452–1459

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Correa-Victoria F J, McClung A, Zhu L, Liu G, Wamishe Y, Xie J, Marchetti M A, Pinson S R M, Rutger J N, Correll J C (2007). Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis, 91: 485–489

    Article  Google Scholar 

  • Jia Y, Martin R (2008) Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance. Mol Plant Microbe Interact, 21: 396–403

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, McAdams S, Bryan G, Hershey H, Valent B (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 19: 4004–4014

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Redus M, Wang Z, Rutger J N (2004). Development of a SNLP marker from the Pi-ta blast resistance gene by tri-Primer PCR. Euphytica, 138: 97–105

    Article  CAS  Google Scholar 

  • Jia Y, Wang Z, Singh P (2002). Development of dominant rice blast resistance Pi-ta gene markers. Crop Sci, 42: 2145–2149

    Article  CAS  Google Scholar 

  • Jia Y, Zhou E, Winston E, Singh P, Correll J, Lee F N, Valent B (2006). Molecular co-evolution of the rice Pi-ta resistance gene and Magnaporthe oryzae avirulence gene AVR-Pita. In: Sanchez F, Quinto C, Lopez-Lara I M, Geiger O, eds. Biology of Plant-Microbe Interactions, Vol. 5, 12th Intern Symp Plant-Microbe Interact, ISMPMI, St. Paul, USA, 325–331

  • Kang S, Lebrun M H, Farrall L, Valent B (2001). Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant-Microbe Interact, 14: 671–674

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Sweigard J A, Valent B (1995). The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact, 8: 939–948

    PubMed  CAS  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007). Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell, 19: 706–724

    Article  PubMed  CAS  Google Scholar 

  • Khang C H, Park S Y, Lee Y H, Valent B, Kang S (2008). Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol Plant-Microbe Interact, 21: 658–670

    Article  PubMed  CAS  Google Scholar 

  • Khush G, Jena K (2007). Current status and future prospects of research on blast disease in rice (Oryza sativa). Oral presentation at the 4th international rice blast conference, Changsha, China

  • Kunihiro Y, Qian Q, Sato H, Teng S, Zeng D L, Fujimoto K, Zhu L H (2002). QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Chin J Genet, 29: 50–55 (in Chinese)

    CAS  Google Scholar 

  • Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S (2009). Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucinerich repeat genes. Genetics, 181: 1627–1638

    Article  PubMed  CAS  Google Scholar 

  • Li B, Wang J, Wu Y, Hu X, Zhang Z, Zhang Q, Zhao Q, Feng H, Zhang Z, Wang G L, Wang G, Lu B, Han Z, Wang Z, Zhou B (2009). The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant-Microbe Interact, 22: 411–420

    Article  PubMed  CAS  Google Scholar 

  • Li Z K, Pinson S R M, Marchetti M A, Stansel J W, Park W D (1995). Characterization of quantitative trait loci (QTL) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet, 91: 382–388

    CAS  Google Scholar 

  • Lin F, Chen S, Que Z Q, Wang L, Liu X Q, Pan Q H (2007). The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 177: 1871–1880

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Jia Y, Correa-Victoria F J, Prado G A, Yeater K M, McClung A, Correll J C (2009). Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology, (in press)

  • Liu X Q, Lin F, Wang L, Pan Q H (2007). The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucinerich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 176: 2541–2549

    Article  PubMed  CAS  Google Scholar 

  • Manosalva P, Davidson R, Hulbert S, Leung H, Leach J E (2009). Germin-like protein genes contribute to rice blast disease resistance governed by quantitative trait loci. Plant Physiol, 149: 286–296

    Article  PubMed  CAS  Google Scholar 

  • Martin G B, Bogdanove A J, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology, 54: 23–61

    Article  PubMed  CAS  Google Scholar 

  • McClung A M, Marchetti M, Webb B, Bollich C (1999). Registration of ‘Madison’ Rice. Crop Sci, 39: 1256

    Article  Google Scholar 

  • Moldenhauer K A K, Gibbons J W, Anders M M, Lee F N, Bernhardt J L, Wilson C E, Cartwright R D, Norman R J, Blocker MM, Boyett V A, Talbert A C, Taylor K, Bulloch J M (2007)a. Registration of ‘spring’ Rice. Crop Sci, 47: 447–449

    Article  Google Scholar 

  • Moldenhauer K A K, Gibbons JW, Lee F N, Bernhardt J L,Wilson C E, Cartwright R D, Anders M M, Norman R J, Blocker M M, Boyett V A, Tolbert A C, Taylor K, Bulloch J M (2007)b. Registration of ‘Banks’ Rice. Crop Sci, 47: 445–446

    Article  Google Scholar 

  • Moldenhauer K A K, Gravois K A, Lee F N, Norman R J, Bernhardt J L, Well B R, Dilday R H, Blocker M M, Rohman P C, McMinn T A (1998). Registration of ‘Drew’ Rice. Crop Sci, 38: 896–897

    Google Scholar 

  • Moldenhauer K A K, Lee F N, Gibbons JW, Bernhardt J L, Norman R J, Slaton N A, Wilson C E, Cartwright R D, Anders M M, Blocker M M, Tolbert A C, Bulloch J M (2007)c. Registration of ‘Ahrent’ Rice. Crop Sci, 47: 446–447

    Article  Google Scholar 

  • Moldenhauer K A K, Lee F N, Norman R J, Helms R S, Well R H, Dilday R H, Rohman P C, Marchetti M A (1990). Registration of ‘Katy’ Rice. Crop Sci, 30: 747–748

    Google Scholar 

  • Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B (2000). A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 12: 2019–2032

    Article  PubMed  CAS  Google Scholar 

  • Pan X B, Zou J H, Chen Z X, Lu J F, Yu H X, Li H T, Wang Z B, Rush M C, Zhu L H (1999). Mapping the QTLs responsible for sheath blight resistance from rice cultivar Jasmine 85. Chinese Science Bulletin, 44: 1629–1635 (in Chinese)

    Google Scholar 

  • Pinson S R M, Capdevielle F M, Oard J H (2005). Confirming QTL and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci, 45: 503–510

    CAS  Google Scholar 

  • Prasad B, Eizenga G C (2008). Rice sheath blight resistance identified in Oryza spp. accessions. Plant Dis, 92: 1503–1509

    Article  Google Scholar 

  • Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai LY, Han B, Wang G L (2006). The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of multigene family in rice. Genetics, 172: 1901–1914

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Ideta O, Ando I, Kunihiro Y, Hirabayashi H, Iwano M, Miyasaka A, Nemoto H, Imbe T (2004). Mapping QTL for sheath blight resistance in the rice line WSS2. Breed Sci, 54: 265–271

    Article  CAS  Google Scholar 

  • Savary S, Teng P S, Willocquet L, Nutter F W Jr (2006). Quantification and modeling of crop losses: A review of purposes. Ann Rev Phytopathol, 44: 89–112

    Article  CAS  Google Scholar 

  • Savary S, Willocquet L, Elazegui FA, Castilla N, Teng P S (2000). Rice pest constraints in tropical Asia: Quantification of yield losses due to rice pests in a range of production situations. Plant Dis, 84: 357–369

    Article  Google Scholar 

  • Sharma A, McClung AM, Pinson S R M, Kepiro J L, Shank A R, Tabien R E, Wang Y, Fjellstrom R G (2009). Genetic mapping of sheath blight resistance QTL within tropical japonica rice cultivars. Crop Sci, 49: 256–264

    Article  CAS  Google Scholar 

  • Silue D, Notteghem J L, Tharreau D (1992). Evidence for a gene for gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology, 82: 577–582

    Article  Google Scholar 

  • Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B (1995). Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 7: 1221–1233

    Article  PubMed  CAS  Google Scholar 

  • Tan C X, Ji XM, Yang Y, Pan X Y, Zuo SM, Zhang Y F, Zou J H, Chen Z X, Zhu L H, Pan X B (2005). Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations. Chin J Genet, 32: 399–405 (in Chinese)

    CAS  Google Scholar 

  • Venu R C, Jia Y, Gowda M, Jia M H, Jantasuriyarat C, Stahlberg E, Li H, Rhineheart A, Boddhireddy P, Singh P, Rutger N, Kudrna D, Wing R, Nelson J C, Wang G L (2007). RL-SAGE and microarray analysis of the rice transcriptome after Rhizoctonia solani infection. Molecular Genetics and Genomics, 278: 421–431

    Article  PubMed  CAS  Google Scholar 

  • Wamishe Y A, Jia Y, Singh P, Cartwright R D (2007). Identification of field isolates of Rhizoctonia solani to detect quantitative resistance in rice under greenhouse conditions. Front Agric China, 1: 361–367

    Article  Google Scholar 

  • Wang X, Jia Y, Shu Q Y, Wu D (2008). Haplotype diversity at the Pi-ta locus in cultivated rice and its wild relatives. Phytopathology, 98: 1305–1311

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999). The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant J, 19: 55–64

    Article  Google Scholar 

  • Wang Z H, Jia Y L, Lin H, Valent B, Rutger J (2007)a. Host active defense responses occur within 24 hours after pathogen inoculation in the rice blast system. Rice Sci, 14: 302–310

    Article  Google Scholar 

  • Wang Z, Jia Y, Rutger J N, Xia Y (2007)b. Rapid survey for presence of a blast resistance gene Pi-ta in rice cultivars using the dominant DNA markers derived from portions of the Pi-ta gene. Plant Breed, 126: 36–42

    Article  CAS  Google Scholar 

  • Yamamoto T, Lin H X, Sasaki T, Yano M (2000). Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice. Genetics, 154: 885–891

    PubMed  CAS  Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997). Identification of quantitative trait loci controlling heading date of rice using a high-density linkage map. Theor Appl Genet, 95: 1025–1032

    Article  CAS  Google Scholar 

  • Yi M, Chi M H, Khang C H, Park S Y, Kang S, Valent B, Lee Y H (2009). The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell, (www.plantcell.org/cgi/doi/10.1105/tpc.107.055988)

  • Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L (2006). The eight amino acid differences within three leucinerich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact, 19: 1216–1228

    Article  PubMed  CAS  Google Scholar 

  • Zhou E X, Jia Y L, Singh P, Correll J C, Lee F N (2007). Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet Biol, 44: 1024–1034

    Article  PubMed  CAS  Google Scholar 

  • Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai WX, Zhu L H (2000). Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet, 101: 569–573

    Article  CAS  Google Scholar 

  • Zou Q (2001). Experiment Guide for Plant Physiology. Beijing: China Agricultural Press, 131–135 (in Chinese)

    Google Scholar 

  • Zuo S M, Yin Y J, Zhang L, Zhang Y F, Chen Z X, Pan X B (2007). Breeding value and further mapping of a QTL qSB-11 conferring the rice sheath blight utilized resistance. Chin J Rice Sci, 21: 136–142 (in Chinese)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Jia.

About this article

Cite this article

Jia, Y., Liu, G., Costanzo, S. et al. Current progress on genetic interactions of rice with rice blast and sheath blight fungi. Front. Agric. China 3, 231–239 (2009). https://doi.org/10.1007/s11703-009-0062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-009-0062-6

Keywords

Navigation