Skip to main content
Log in

Synthesis and spectroscopic studies of carbon nanosheets (CNSs) produced by pyrolysis of phthalazinium betaines at relatively lower temperature

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The main scope of this comprehensive study is to investigate the annealing temperature effects (300 °C ≤ T ≤ 500 °C) on the crucial properties as regards the characteristic bond structures, surface morphology, crystallinity, crystal plane alignments, phase purity, local elemental compositions and distributions of the carbon nanosheets (CNSs). The materials are prepared by the solid-state air pyrolysis of the compound, 2-phenylphthalazin-2-ium-4-olate (phthalazinium betaine). Characterization of compounds prepared in air atmosphere conditions is performed by thermal gravimetric analysis, Fourier transformation-infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and electron-dispersive X-ray techniques. It is found that the temperature value of 350 °C favors the formation velocity of CNSs due to the transition in more turbostratic structure of the system. In fact, the product (prepared at 350 °C) exhibits the largest nucleation and growth rates on the surface. Thus, the distribution (regular grain orientation) of CNSs is observed to be most homogenous, leading to the larger nestlike structures with more corrugated and bunched forms (much sharper edges) in the crystal structure. All the results obtained demonstrate that the best product with unique features is an intriguing material for potential applications in nanoelectronics and biomedical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitken RA, Karodia N, Lightfoot PJ (2000) The solid state conformation of oxo stabilised ylides: X-ray structure of four new polyoxo phosphorus ylides. Chem Soc Perkin Trans 2:333–340

    Article  Google Scholar 

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800

    Article  CAS  PubMed  Google Scholar 

  • Baikousi M, Dimos K, Bourlinos AB, Zboril R, Papadas I, Deligiannakis Y, Karakassides MA (2012) Surface decoration of carbon nanosheets with amino-functionalized organosilica nanoparticles. Appl Surf Sci 258:3703–3709

    Article  CAS  Google Scholar 

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  • Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, deHeer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Booth IR, Pourkomailian B, McLaggan D, Koo SPJ (1994) Mechanisms controlling compatible solute accumulation: a consideration of the genetic sand physiology of bacterial osmoregulation. J Food Eng 22:81–397

    Article  Google Scholar 

  • Bourlinos AB, Steriotis TA, Zboril R, Georgakilas V, Stubos AJ (2009) Direct synthesis of carbon nanosheets by the solid-state pyrolysis of betaine. Mater Sci 44:1407–1411

    Article  CAS  Google Scholar 

  • Canavar PE, Eksin E, Erdem A (2015) Electrochemical monitoring of the interaction between mitomycin C and DNA at chitosan–carbon nanotube composite modified electrodes. Turk J Chem 39:1–12

    Article  CAS  Google Scholar 

  • Cayley S, Lewis BA, Record MT (1992) Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. Bacteriol 174(5):1586–1595

    Article  CAS  Google Scholar 

  • Chung DDL (2002) Review graphite. J Mater Sci 37(8):1475–1489

    Article  CAS  Google Scholar 

  • Dasgupta K, Sathiyamoorthy D (2003) Disordered carbon–its preparation, structure, and characterization. Mater Sci Technol 19:995–1002

    Article  CAS  Google Scholar 

  • Dennis N, Katritzky AR, Ramaiah M (1976) 1,3-Dipolar character of six-membered aromatic rings. Part XI. 1-Oxido-3-phenylphthalazinium. J Chem Soc Perk Trans 1 21:2281–2284

    Article  Google Scholar 

  • Di C, Wei D, Yu G, Liu Y, Guo Y, Zhu D (2008) Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 20:3289–3293

    Article  CAS  Google Scholar 

  • Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  Google Scholar 

  • Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nature Commun 4:1539

    Article  CAS  Google Scholar 

  • Feng H, Wu Y, Li J (2014) Direct exfoliation of graphite to graphene by a facile chemical approach. Small 10(11):2233–2238

    Article  CAS  PubMed  Google Scholar 

  • Fischer E, Besthorn E (1882) Suldoharnstoffe des phenylhydrazines. Liebigs Ann Chem 212:316

    Article  Google Scholar 

  • Fonts I, Juan A, Gea G, Murilla MB, Sa’nchez JL (2008) Sewage sludge pyrolysis in fluidized bed, 1: influence of operational conditions on the product distribution. Ind Eng Chem Res 47:5376–5385

    Article  CAS  Google Scholar 

  • French BL, Wang JJ, Zhu MY, Holloway BCJ (2005) Structural characterization of carbon nanosheets via X-Ray scattering. J Appl Phys 97:114317

    Article  CAS  Google Scholar 

  • Geim AK, Kim P (2008) Carbon wonderland. Sci Am 298:90–97

    Article  CAS  PubMed  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  • Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761

    Article  CAS  Google Scholar 

  • Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Yurii K, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Chen W, Chen S, Wee ATS (2008) Bottom-up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2(12):2513–2518

    Article  CAS  PubMed  Google Scholar 

  • Huisgen R (1963) 1,3-Dipolar cycloadditon. Past and future. Angew Chem Int Edit 2:565–598

    Article  Google Scholar 

  • Jang BZ, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43(15):5092–5101

    Article  CAS  Google Scholar 

  • Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5:321–325

    Article  CAS  PubMed  Google Scholar 

  • Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907

    Article  CAS  Google Scholar 

  • Kuang Q, Xie SY, Jiang ZY, Zhang XH, Xie ZX, Huang RB, Zheng LS (2004) Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Carbon 42(46):1737–1741

    Article  CAS  Google Scholar 

  • Kuzmenko AB, Van Heumen E, Carbone F, Van der Marel D (2008) Universal dynamical conductance in graphite. Phys Rev Lett 100:117401

    Article  CAS  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. J Sci 321:385–388

    Article  CAS  Google Scholar 

  • Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45(8):1686–1695

    Article  CAS  Google Scholar 

  • Liu M, Li J (2015) Heating treated carbon nanotubes as highly active electrocatalysts for oxygen reduction reaction. Electrochim Acta 154:177–183

    Article  CAS  Google Scholar 

  • Liu Z, Wu Y, Li J (2015) One-step synthesis of MnO2 flower/carbon nanotube with improved lithium storage properties. Nanosci Nanotechnol 15:2896–2901

    Article  CAS  Google Scholar 

  • Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620

    Article  CAS  PubMed  Google Scholar 

  • Molina IS, Ince M, Bottari G, Claessens CG, Martinez-Diaz MV, Torres T (2014) Encapsulation of phthalocyanine-C60 fullerene conjugates into metallosupramolecular subphthalocyanine capsules: a turn of the screw. Turk J Chem 38:1006–1012

    Article  CAS  Google Scholar 

  • Muradov N, Schwitter A (2002) Formation of conical carbon structures on vapor-grown carbon filaments. Nano Lett 2:673–676

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  • Ollis WD, Stanforth SP, Ramsden CA (1985) Heterocyclic mesomeric betaines. Tetrahedron 41(12):2239–2329

    Article  CAS  Google Scholar 

  • Qi JL, Wang X, Tian HW, Peng YS, Liu C, Zheng WT (2009) Syntheses of carbon nanomaterials by radio frequency plasma enhanced chemical vapor deposition. J Alloy Compd 486:265–272

    Article  CAS  Google Scholar 

  • Qin Y, Eggers M, Staedler T, Jiang X (2007) Symmetric growth of carbon nanosheets on Cu nanowires by a surface diffusion mechanism. Nanotechn 18:345607

    Article  CAS  Google Scholar 

  • Raoof JB, Ojani R, Baghayeri M (2013) Fabrication of layer-by-layer deposited films containing carbon nanotubes and poly(malachite green) as a sensor for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Turk J Chem 37:36–50

    CAS  Google Scholar 

  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few- layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35

    Article  CAS  PubMed  Google Scholar 

  • Sakai N, Funabashi M, Hamada T, Minakata S, Ryu I, Komatsu M (1999) Synthesis of mesomeric betaines containing a pyrrolo- or imidazotriaziniumolate system and their cycloaddition with acetylenic dipolarophiles leading to triazocinone derivatives. Tetrahedron 55:13703–13724

    Article  CAS  Google Scholar 

  • Schmidt A (2003) Heterocyclic mesomeric betaines and analogs in natural product chemistry. Betainic alkaloids and nucleobases. Adv Heterocycl Chem 85:67–171

    Article  CAS  Google Scholar 

  • Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R (2010) Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3):630–635

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  • Suuronen J, Pitkanen I, Halttunen H, Moilanen RJ (2002) Formation of the main gas compounds during thermal analysis and pyrolysis: betaine and betaine monohydrate. Therm Anal Calorim 69(1):359–369

    Article  CAS  Google Scholar 

  • Viertorinne M, Valkonen J, Pitkanen I, Mathlouthi M, Nurmi J (1999) Crystal and molecular structure of anhydrous betaine, (CH3)3NCH2CO2. J Mol Struct 477:23–29

    Article  CAS  Google Scholar 

  • Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42(14):2867–2872

    Article  CAS  Google Scholar 

  • Zhao X, Outlaw RA, Wang JJ, Zhu MY, Smith GD, Holloway BC (2006) Thermal desorption of hydrogen from carbon nanosheets. J Chem Phys 124(19):194704

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barıs Güzel.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güzel, B., Celebi, N. & Yıldırım, G. Synthesis and spectroscopic studies of carbon nanosheets (CNSs) produced by pyrolysis of phthalazinium betaines at relatively lower temperature. Chem. Pap. 73, 2007–2017 (2019). https://doi.org/10.1007/s11696-019-00762-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00762-5

Keywords

Navigation