Skip to main content
Log in

Mathematical modeling for facilitated transport of Ge(IV) through supported liquid membrane containing Alamine 336

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A mathematical model was developed for the germanium-facilitated transport from a medium containing tartaric acid using Alamine 336 as a carrier. Modeling was carried out based on the extraction constant (K ext) obtained from the liquid–liquid extraction (LLX) modeling. The LLX data were achieved from experiments with conditions being Alamine 336 concentrations of 0.1–10% v/v from a solution containing about 1.378 mmol/L Ge (100 mg/L) and tartaric acid as an anionic complexant. The LLX model was attained using the equilibrium-based procedure and fitted to extraction experimental data for various carrier concentrations. This model presented an accurate extraction constant (K ext = 0.02) used in the facilitated transport modeling. The flat sheet supported liquid membrane (FSSLM) experiments were conducted in the condition of 1.378 mmol/L Ge (100 mg/L), tartaric acid concentration of 2.760 mmol/L, 1 M HCl as a stripping phase and various Alamine 336 concentrations in the range of 0–35% v/v. The FSSLM model was developed according to the Fick’s law, the diffusional transport, and equilibrium equations. According to the model, mass transfer and diffusion coefficients for various concentrations of the carrier were found. In addition, the calculated and experimental values had a good correlation with together showing the validity of the model. This model can be used in the further process simulation such as hollow fiber SLMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguilar JC, Sánchez-Castellanos M, de San Miguel ER, de Gyves J (2001) Cd(II) and Pb(II) extraction and transport modeling in SLM and PIM systems using Kelex 100 as carrier. J Membr Sci 190:107–118. https://doi.org/10.1016/S0376-7388(01)00433-1

    Article  CAS  Google Scholar 

  • Alguacil FJ, Alonso M (2005) Description of transport mechanism during the elimination of copper(II) from wastewaters using supported liquid membranes and Acorga M5640 as carrier. Environ Sci Technol 39:2389–2393

    Article  CAS  Google Scholar 

  • Alguacil FJ, Alonso M, Sastre AM (2001a) Modelling of mass transfer in facilitated supported liquid membrane transport of copper(II) using MOC-55 TD in Iberfluid. J Membr Sci 184:117–122. https://doi.org/10.1016/S0376-7388(00)00614-1

    Article  CAS  Google Scholar 

  • Alguacil FJ, Coedo A, Dorado M, Padilla I (2001b) Phosphine oxide mediate transport: modelling of mass transfer in supported liquid membrane transport of gold(III) using Cyanex 923. Chem Eng Sci 56:3115–3122

    Article  CAS  Google Scholar 

  • Alguacil FJ, Alonso M, Sastre A (2005) Facilitated supported liquid membrane transport of gold(I) and gold(III) using Cyanex® 921. J Membr Sci 252:237–244

    Article  CAS  Google Scholar 

  • Alonso AI, Urtiaga AM, Irabien A, Ortiz MI (1994) Extraction of Cr(VI) with Aliquat 336 in hollow fiber contactors: mass transfer analysis and modeling. Chem Eng Sci 49:901–909

    Article  CAS  Google Scholar 

  • Alonso M, López-Delgado A, Sastre AM, Alguacil FJ (2006) Kinetic modelling of the facilitated transport of cadmium(II) using Cyanex 923 as ionophore. Chem Eng J 118:213–219. https://doi.org/10.1016/j.cej.2006.02.006

    Article  CAS  Google Scholar 

  • Ammari Allahyari S, Minuchehr A, Ahmadi SJ, Charkhi A (2016) Th(IV) transport from nitrate media through hollow fiber renewal liquid membrane. J Membr Sci 520:374–384. https://doi.org/10.1016/j.memsci.2016.08.009

    Article  CAS  Google Scholar 

  • Ata ON (2007) Mathematical modelling of unsteady-state transport of metal ions through supported liquid membrane. Hydrometallurgy 87:148–156

    Article  CAS  Google Scholar 

  • Bachmann RT, Wiemken D, Tengkiat AB, Wilichowski M (2010) Feasibility study on the recovery of hexavalent chromium from a simulated electroplating effluent using Alamine 336 and refined palm oil. Sep Purif Technol 75:303–309. https://doi.org/10.1016/j.seppur.2010.08.019

    Article  CAS  Google Scholar 

  • Baes CF, Mesmer RS (1977) The Hydrolysis of Cations Berichte der Bunsengesellschaft für physikalische. Chemie 81:245–246. https://doi.org/10.1002/bbpc.19770810252

    Google Scholar 

  • Benzal G, Kumar A, Delshams A, Sastre AM (2004) Mathematical modelling and simulation of cotransport phenomena through flat sheet-supported liquid membranes. Hydrometallurgy 74:117–130. https://doi.org/10.1016/j.hydromet.2004.01.005

    Article  CAS  Google Scholar 

  • Bhatluri KK, Manna MS, Ghoshal AK, Saha P (2015) Supported liquid membrane based removal of lead (II) and cadmium (II) from mixed feed: conversion to solid waste by precipitation. J Hazard Mater 299:504–512

    Article  CAS  Google Scholar 

  • Boateng DAD, Neudorf DA, Saleh VN (1990) Recovery of germanium from aqueous solutions by solvent extraction. US Patent 4,915,919, 10 Apr 1990

  • Bringas E, San Román MF, Ortiz I (2006) Separation and recovery of anionic pollutants by the emulsion pertraction technology. Remediation of polluted groundwaters with Cr(VI). Ind Eng Chem Res 45:4295–4303. https://doi.org/10.1021/ie051418e

    Article  CAS  Google Scholar 

  • Buachuang D, Ramakul P, Leepipatpiboon N, Pancharoen U (2011) Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane. J Alloy Compd 509:9549–9557

    Article  CAS  Google Scholar 

  • Campderros ME, Marchese J (1994) Membrane transport of cobalt, copper and nickel with trioctyl amine. Indian J Chem Technol 1:35–39

    CAS  Google Scholar 

  • Campderrós ME, Marchese J (2001) Transport of niobium(V) through a TBP–Alamine 336 supported liquid membrane from chloride solutions. Hydrometallurgy 61:89–95. https://doi.org/10.1016/S0304-386X(01)00165-7

    Article  Google Scholar 

  • Castillo E, Granados M, Cortina JL (2002) Liquid-supported membranes in chromium(VI) optical sensing: transport modelling. Anal Chim Acta 464:197–208. https://doi.org/10.1016/S0003-2670(02)00473-7

    Article  CAS  Google Scholar 

  • Chaturabul S, Srirachat W, Wannachod T, Ramakul P, Pancharoen U, Kheawhom S (2015) Separation of mercury(II) from petroleum produced water via hollow fiber supported liquid membrane and mass transfer modeling. Chem Eng J 265:34–46. https://doi.org/10.1016/j.cej.2014.12.034

    Article  CAS  Google Scholar 

  • Clark ER (1959) Interaction between organic hydroxy acids and germanic acid in aqueous solution. Nature 183:536–537

    Article  CAS  Google Scholar 

  • Clark ER, Waddams JA (1957) Interaction between organic hydroxy acids and silicic and germanic acids in aqueous solutions. Nature 180:904–905

    Article  CAS  Google Scholar 

  • Danesi PR (1984) A simplified model for the coupled transport of metal ions through hollow-fiber supported liquid membranes. J Membr Sci 20:231–248

    Article  CAS  Google Scholar 

  • Duan H, Wang S, Yang X, Yuan X, Zhang Q, Huang Z, Guo H (2017a) Simultaneous separation of copper from nickel in ammoniacal solutions using supported liquid membrane containing synergistic mixture of M5640 and TRPO. Chem Eng Res Des 117:460–471. https://doi.org/10.1016/j.cherd.2016.11.003

    Article  CAS  Google Scholar 

  • Duan H, Yuan X, Zhang Q, Wang Z, Huang Z, Guo H, Yang X (2017b) Separation of Ni2+ from ammonia solution through a supported liquid membrane impregnated with Acorga M5640. Chem Pap 71:597–606. https://doi.org/10.1007/s11696-016-0041-3

    Article  CAS  Google Scholar 

  • El Aamrani F, Kumar A, Beyer L, Cortina J, Sastre A (1998) Uphill permeation model of gold(III) and its separation from base metals using thiourea derivatives as ionophores across a liquid membrane. Hydrometallurgy 50:315–330

    Article  Google Scholar 

  • El Aamrani F, Kumar A, Sastre A (1999) Kinetic modelling of the active transport of copper(II) across liquid membranes using thiourea derivatives immobilized on microporous hydrophobic supports. New J Chem 23:517–523. https://doi.org/10.1039/A901203F

    Article  Google Scholar 

  • Everest DA, Harrison JC (1960) 747. The chemistry of quadrivalent germanium. Part VIII. Complexes of germanium with tartaric, lactic, and mucic acid. J Chem Soc (Resumed):3752-3758. doi:https://doi.org/10.1039/JR9600003752

  • Fortuny A, Coll MT, Kedari CS, Sastre AM (2014) Effect of phase modifiers on boron removal by solvent extraction using 1,3 diolic compounds. J Chem Technol Biotechnol 89:858–865. https://doi.org/10.1002/jctb.4322

    Article  CAS  Google Scholar 

  • Gherrou A, Kerdjoudj H, Molinari R, Drioli E (2001) Modelization of the transport of silver and copper in acidic thiourea medium through a supported liquid membrane. Desalination 139:317–325. https://doi.org/10.1016/S0011-9164(01)00325-3

    Article  CAS  Google Scholar 

  • Hiss TG, Cussler EL (1973) Diffusion in high viscosity liquids. AIChE J 19:698–703. https://doi.org/10.1002/aic.690190404

    Article  CAS  Google Scholar 

  • Hosseini SS, Bringas E, Tan NR, Ortiz I, Ghahramani M, Shahmirzadi MAA (2016) Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment. J Water Process Eng 9:78–110

    Article  Google Scholar 

  • Jahanmahin O, Montazer Rahmati MM, Mohammadi T, Babaee J, Khosravi A (2016) Cr(VI) ion removal from artificial waste water using supported liquid membrane. Chem Pap 70:913–925. https://doi.org/10.1515/chempap-2016-0027

    Article  CAS  Google Scholar 

  • Janjam SVSB, Peddeti S, Roy D, Babu SV (2008) Tartaric acid as a complexing agent for selective removal of tantalum and copper in CMP. Electrochem Solid State Lett 11:H327–H330. https://doi.org/10.1149/1.2980345

    Article  CAS  Google Scholar 

  • Kalachev AA, Kardivarenko LM, Platé NA, Bagreev VV (1992) Facilitated diffusion in immobilized liquid membranes: experimental verification of the “jumping” mechanism and percolation threshold in membrane transport. J Membr Sci 75:1–5. https://doi.org/10.1016/0376-7388(92)80001-Z

    Article  CAS  Google Scholar 

  • Kaya A, Alpoguz HK, Yilmaz A (2013) Application of Cr(VI) transport through the Polymer inclusion membrane with a new synthesized Calix[4]arene derivative. Ind Eng Chem Res 52:5428–5436. https://doi.org/10.1021/ie303257w

    Article  CAS  Google Scholar 

  • Kaya A, Onac C, Alpoguz HK (2016) A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant DC electric current. J Hazard Mater 317:1–7. https://doi.org/10.1016/j.jhazmat.2016.05.047

    Article  CAS  Google Scholar 

  • Kolev SD, St John AM, Cattrall RW (2013) Mathematical modeling of the extraction of uranium(VI) into a polymer inclusion membrane composed of PVC and di-(2-ethylhexyl) phosphoric acid. J Membr Sci 425–426:169–175. https://doi.org/10.1016/j.memsci.2012.08.050

    Article  Google Scholar 

  • Kumar A, Sastre A (2000) Hollow fiber supported liquid membrane for the separation/concentration of gold(I) from aqueous cyanide media: modeling and mass transfer evaluation. Ind Eng Chem Res 39:146–154

    Article  CAS  Google Scholar 

  • Lantto J (2015) Analytical model of mass transfer through supported liquid membranes. KTH University, Stockholm

    Google Scholar 

  • Liang J, Fan L, Xu K, Huang Y (2012) Study on extracting of Germanium with trioctylamine. Energy Procedia 17:1965–1973. https://doi.org/10.1016/j.egypro.2012.02.340

    Article  CAS  Google Scholar 

  • Liu F, Yang Y, Lu Y, Shang K, Lu W, Zhao X (2010) Extraction of Germanium by the AOT Microemulsion with N235 System. Ind Eng Chem Res 49:10005–10008. https://doi.org/10.1021/ie100963t

    Article  CAS  Google Scholar 

  • Marchese J, Campderrós M, Acosta A (1995) Transport and separation of cobalt, nickel and copper ions with alamine liquid membranes. J Chem Technol Biotechnol 64:293–297

    Article  CAS  Google Scholar 

  • Marchese J, Valenzuela F, Basualto C, Acosta A (2004) Transport of molybdenum with Alamine 336 using supported liquid membrane. Hydrometallurgy 72:309–317

    Article  CAS  Google Scholar 

  • Marinova M, Albet J, Molinier J, Kyuchoukov G (2005) Specific influence of the modifier (1-decanol) on the extraction of tartaric acid by different extractants. Ind Eng Chem Res 44:6534–6538

    Article  CAS  Google Scholar 

  • Martsinko EE, Seifullina II, Minacheva LK, Pesaroglo AG, Sergienko VS (2008) Synthesis, properties, and molecular and crystal structure of diantipyrylmethanium Bis(μ-tartrato)dihydroxydigermanate(IV) tetrahydrate (HDAm)2[Ge2(μ-L)2(OH)2]·4H2O. Russ J Inorg Chem 53:1694–1702. https://doi.org/10.1134/S0036023608110053

    Article  Google Scholar 

  • Mattock G (1954) The complex-forming behaviour of tin, germanium, and titanium with some dibasic carboxylic acids. J Chem Soc (Resumed):989–997. doi:https://doi.org/10.1039/JR9540000989

  • Mokhtarani B, Khormaei H, Amini MH, Mortaheb HR (2015) Experimental Study on performance of modified hybrid liquid membrane process for removal of cadmium from wastewater. J Chem Petroleum Eng 48:109–118

    Google Scholar 

  • Nakamura S, Akiba K (1989) Transport of Europium through supported liquid membrane containing dihexyl-N, N-diethylcarbamoylmethylphosphonate. Sep Sci Technol 24:1317–1328. https://doi.org/10.1080/01496398908050653

    Article  CAS  Google Scholar 

  • Peydayesh M, Esfandyari GR, Mohammadi T, Alamdari EK (2013) Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers. Chem Pap 67:389–397. https://doi.org/10.2478/s11696-013-0310-3

    Article  CAS  Google Scholar 

  • Pflugmacher A, Rohrmann I (1957) Über Komplexverbindungen des Germaniums mit organischen Hydroxysäuren. Angew Chem 69:778–7781. https://doi.org/10.1002/ange.19570692404

    Article  CAS  Google Scholar 

  • Pokrovski GS, Schott J (1998) Experimental study of the complexation of silicon and germanium with aqueous organic species: implications for germanium and silicon transport and Ge/Si ratio in natural waters. Geochim Cosmochim Acta 62:3413–3428. https://doi.org/10.1016/S0016-7037(98)00249-X

    Article  CAS  Google Scholar 

  • Pokrovski GS, Martin F, Hazemann J-L, Schott J (2000) An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution. Chem Geol 163:151–165. https://doi.org/10.1016/S0009-2541(99)00102-3

    Article  CAS  Google Scholar 

  • Prakorn R, Weerawat P, Ura P (2006) Mass transfer modeling of membrane carrier system for extraction of Ce(IV) from sulfate media using hollow fiber supported liquid membrane. Korean J Chem Eng 23:85–92

    Article  CAS  Google Scholar 

  • Prapasawat T, Ramakul P, Satayaprasert C, Pancharoen U, Lothongkum AW (2008) Separation of As (III) and As (V) by hollow fiber supported liquid membrane based on the mass transfer theory. Korean J Chem Eng 25:158–163

    Article  CAS  Google Scholar 

  • Prasad R, Sirkar K (1988) Dispersion-free solvent extraction with microporous hollow-fiber modules. AIChE J 34:177–188

    Article  CAS  Google Scholar 

  • Rathore NS, Leopold A, Pabby AK, Fortuny A, Coll MT, Sastre AM (2009) Extraction and permeation studies of Cd(II) in acidic and neutral chloride media using Cyanex 923 on supported liquid membrane. Hydrometallurgy 96:81–87. https://doi.org/10.1016/j.hydromet.2008.08.009

    Article  CAS  Google Scholar 

  • Sastre AM, Madi A, Alguacil FJ (2000) Facilitated supported liquid-membrane transport of gold(I) using LIX 79 in cumene. J Membr Sci 166:213–219

    Article  CAS  Google Scholar 

  • Sergienko VS, Minacheva LK, Churakov AV (2010) Specific features of the structure of germanium(IV) complexes with polybasic acids. Russ J Inorg Chem 55:2001–2030. https://doi.org/10.1134/s0036023610130012

    Article  CAS  Google Scholar 

  • Swain B, Jeong J, J-c Lee, Lee G-H (2007) Extraction of Co(II) by supported liquid membrane and solvent extraction using Cyanex 272 as an extractant: a comparison study. J Membr Sci 288:139–148. https://doi.org/10.1016/j.memsci.2006.11.012

    Article  CAS  Google Scholar 

  • Ura P, Prakorn R, Weerawat P, Milan H (2006) Feasibility study on the separation of uranium and thorium by a hollow fiber supported liquid membrane and mass transfer modeling. Ind Eng Chem Res 12:673

    CAS  Google Scholar 

  • Valdés H, Romero J, Sanchez J, Bocquet S, Rios GM, Valenzuela F (2009) Characterization of chemical kinetics in membrane-based liquid–liquid extraction of molybdenum(VI) from aqueous solutions. Chem Eng J 151:333–341. https://doi.org/10.1016/j.cej.2009.04.012

    Article  Google Scholar 

  • Valenzuela F, Vega M, Yanez M, Basualto C (2002) Application of a mathematical model for copper permeation from a Chilean mine water through a hollow fiber-type supported liquid membrane. J Membr Sci 204:385–400

    Article  CAS  Google Scholar 

  • Vartapetian O (1957) Contribution a` l’e´tude des complexes du germanium et de quelques acides a-alcools. Ann Chem 2:917–965

    Google Scholar 

  • Wang D, Chen Q, Hu J, Fu M, Luo Y (2015) High flux recovery of copper (II) from ammoniacal solution with stable sandwich supported liquid membrane. Ind Eng Chem Res 54:4823–4831

    Article  CAS  Google Scholar 

  • Wannachod T, Leepipatpiboon N, Pancharoen U, Nootong K (2014) Separation and mass transport of Nd(III) from mixed rare earths via hollow fiber supported liquid membrane: experiment and modeling. Chem Eng J 248:158–167. https://doi.org/10.1016/j.cej.2014.03.024

    Article  CAS  Google Scholar 

  • Yang Q, Kocherginsky N (2007) Copper removal from ammoniacal wastewater through a hollow fiber supported liquid membrane system: modeling and experimental verification. J Membr Sci 297:121–129

    Article  CAS  Google Scholar 

  • Zoecklein BW, Fugelsang KC, Gump BH, Nury FS, Gump BH, Nury FS (1990) Tartaric acid and its salts. In: Zoecklein BW, Fugelsang KC (eds) Production wine analysis. Springer, Boston, pp 289–315. https://doi.org/10.1007/978-1-4615-8146-8_13

    Chapter  Google Scholar 

Download references

Acknowledgements

This research has been conducted in the laboratory of Department of Chemical Engineering, Universitat Politècnica de Catalunya, Vilanova i la Geltrú Campus, Spain. The authors wish to thank all staffs for their help and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Irannajad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamran Haghighi, H., Irannajad, M., Fortuny, A. et al. Mathematical modeling for facilitated transport of Ge(IV) through supported liquid membrane containing Alamine 336. Chem. Pap. 72, 955–970 (2018). https://doi.org/10.1007/s11696-017-0332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0332-3

Keywords

Navigation