Skip to main content
Log in

A method for estimation of transport properties of ZSM-5 zeolite

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A method for a quick testing of transport properties of samples of a zeolite catalyst has been developed. The method is based on the application of gas-phase chromatography, where the tested sample is used as the stationary phase. Cyclopentene, cyclohexane, and 1,3,5-trimethylcyclohexane were used as the testing molecules. A retention indexes for samples comparison were introduced. The method is sensitive even to small changes in the zeolite structures caused by binding agents and/or alkali metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackmann T, de Haart LGJ, Lehnert W, Stolten DJ (2003) Modeling of mass and heat transport in planar substrate type SOFCs. J Electrochem Soc 150:783–789. doi:10.1149/1.1574029

    Article  Google Scholar 

  • Brader WH (1965) US Patent 3056788. U.S. Patent and Trademark Office, Washington, D.C.

  • Brader WH, Rowton RL (1967) US Patent 3297701. U.S. Patent and Trademark Office, Washington, D.C.

  • Čapek P, Veselý M, Hejtmánek V (2014) On the measurement of transport parameters of porous solids in permeation and Wicke-Kallenbach cells. Chem Eng Sci 118:192–207. doi:10.1016/j.ces.2014.07.039

    Article  Google Scholar 

  • Disteldorf J, Finke N, Hubel W (1989) European Patent 0313753. European Patent Office, Munich

    Google Scholar 

  • Duncan WL, Möller KP (2000) On the diffusion of cyclohexane in ZSM-5 measured by zero-length-column chromatography. Ind Eng Chem Res 39:2105–2113. doi:10.1021/ie9907573

    Article  CAS  Google Scholar 

  • Hesse M, Lermer H, Steck W, Fischer R, Muller H, Scharf E (1990) European Patent 0382055. European Patent Office, Munich

    Google Scholar 

  • Holderich W, Schneider K (1988) European Patent 0263463. European Patent Office, Munich

    Google Scholar 

  • Holderich W, Scheider K, Ruge B (1988) European Patent 0290862. European Patent Office, Munich

    Google Scholar 

  • Hou K, Fowles M, Hughes R (1999) Effective Diffusivity measurements on porous catalyst pellets at elevated temperature and pressure. Chem Eng Res Des 77:55–56. doi:10.1205/026387699525873

    Article  CAS  Google Scholar 

  • Imre L, Horstman W, Leopold HG (1980) DE Patent 2846813. German Patent and Trade Mark Office, Munich

    Google Scholar 

  • King SW (1991) European Patent 0476781. European Patent Office, Munich

    Google Scholar 

  • Kolaczkowski ST (2003) Measurement of effective diffusivity in catalyst-coated monoliths. Catal Today 83:85–95. doi:10.1016/S0920-5861(03)00218-9

    Article  CAS  Google Scholar 

  • Krause JH (1961) US Patent 3985658. U.S. Patent and Trademark Office, Washington, D.C.

  • Kubín M (1965) Beitrag zur theorie der chromatographie. Collect Czech Chem Commun 30:1104–1118. doi:10.1135/cccc19651104

    Article  Google Scholar 

  • Kučera E (1965) Contribution to the theory of chromatography: linear nonequilibrium elution chromatography. J Chromatogr 9:237–248. doi:10.1016/S0021-9673(01)99457-9

    Google Scholar 

  • Li H, Santiestaban J, Armor JN (1998) European Patent 0831096. European Patent Office, Munich

    Google Scholar 

  • Li H, Santiestaban J, Emig LN, Armor JN (1999) European Patent 0952152. European Patent Office, Munich

    Google Scholar 

  • Mascioli RL (1961) US Patent 2977364. U.S. Patent and Trademark Office, Washington, D.C.

  • Masciolli RL (1965) US Patent 3166558. U.S. Patent and Trademark Office, Washington, D.C.

  • Mori S, Barth HG (1999) Size exclusion chromatography. Springer, Berlin

    Book  Google Scholar 

  • Ohayon D, Le Van Mao R, Ciaravino D, Hazel H, Cochennec A, Rolland N (2001) Methods for pore size engineering in ZSM-5 zeolite. Appl Catal A: Gen 217:241–251. doi:10.1016/S0926-860X(01)00611-1

    Article  CAS  Google Scholar 

  • Pašek J, Petrisko M, Hula J, Havel M (1998) CZ Patent 287431. Czech Patent and Trademark Office, Prague

    Google Scholar 

  • Santiestaban J, Li H, Armor JN (1998) European Patent 0842936. European Patent Office, Munich

    Google Scholar 

  • Sato H, Tsuzuki M (1991) US Patent 5041548. U.S. Patent and Trademark Office, Washington, D.C.

  • Thomas W, Hausen M (1968) DE Patent 1445578. European Patent Office, Munich

    Google Scholar 

  • Trejbal J, Pašek J, Petrisko M, Maršolek P (2005) CZ Patent 300798. Czech Patent and Trademark Office, Prague

    Google Scholar 

  • Trejbal J, Pašek J, Petrisko M (2007) Side products formation in the synthesis of Diazabicyclo[2.2.2]octane on zeolite ZSM-5. Chem Eng Technol 30:1506–1511. doi:10.1002/ceat.200700189

    Article  CAS  Google Scholar 

  • Trejbal J, Pašek J, Petrisko M (2008) Effect of zeolite ZSM-5 particle size in the synthesis of 1,4-Diazabicyclo[2.2.2]octane. Collect Czech Chem Commun 73:956–966. doi:10.1135/cccc20080956

    Article  CAS  Google Scholar 

  • Tsukasa O (1993) JP Patent 5017460. Japan Patent Office, Tokyo

    Google Scholar 

  • Tsukasa O (2002) European Patent 1192993. European Patent Office, Munich

    Google Scholar 

  • Weber RW, Moller KP, O’Connor CT (2000) The chemical vapour and liquid deposition of tetraethoxysilane on ZSM-5, mordenite and beta. Microporous Mesoporous Mater 35:533–543. doi:10.1016/S1387-1811(99)00248-6

    Article  Google Scholar 

  • Weitkamp J, Puppe L (1999) Catalysis and zeolites. Springer, Berlin

    Book  Google Scholar 

  • Weitkamp J, Ernst S, Lindner D, Buysch HJ, Botta A, Puppe L (1991) European Patent 0423526. European Patent Office, Munich

    Google Scholar 

  • Wells JE, Eskinazi V (1983) European Patent 0069322. European Patent Office, Munich

    Google Scholar 

  • Zhu X, Wang H, Lin YS (2010) Effect of the membrane quality on gas permeation and chemical vapor deposition modification of MFI-Type zeolite membranes. Ind Eng Chem Res 49:10026–10033. doi:10.1021/ie101101z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zapletal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trejbal, J., Zapletal, M. A method for estimation of transport properties of ZSM-5 zeolite. Chem. Pap. 71, 795–801 (2017). https://doi.org/10.1007/s11696-016-0083-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0083-6

Keywords

Navigation