Skip to main content
Log in

Electrocatalytic hydrogen evolution in acidic media using electrodeposited Ag/PPy and Ni/PPy hybrid materials

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Two types of hybrid films were prepared by electrolytic deposition of Ni or Ag nanoparticles on pre-deposited polypyrrole (PPy) layers to produce electrocatalytic materials for the hydrogen evolution reaction (HER). Porous PPy substrate was used to increase the surface area for active material deposition and accordingly to enhance the catalytic performance of hybrid electrodes. The influence of metallic nanoparticle loading on electrocatalytic activity of hybrid electrodes was studied. Surface morphology of electrodes produced was characterised by scanning electron microscope. It was found that the increasing number of deposition cycles resulted in increasing amount of Ni nanoparticles while rather in increasing size of Ag nanoparticles deposited on PPy substrate. The electrocatalytic activity of hybrid layers and bare metallic layers deposited at the same conditions was evaluated by linear Tafel polarization and electrochemical impedance spectroscopy in a 0.5 M H2SO4 solution. Hybrid layers showed enhanced catalytic activity as compared to bare metallic layers. The best HER performance was observed for electrodes with highest metallic nanoparticle loading. The comparison of values of overpotential needed to afford the cathodic current density of 10 mA/cm2 has shown that hybrid layers containing Ag exhibited slightly higher catalytic activity towards the HER than Ni-containing layers. However, lower values of equilibrium potential were observed for Ni-containing hybrid layers as compared to Ag-containing layers. The Tafel analysis indicated that the HER was limited by the Volmer step for Ag-containing electrodes, while by the Heyrovsky step for Ni-containing electrodes. Electrochemical impedance spectroscopy revealed that the hybrid layers with highest metallic nanoparticle loading reduce the charge transfer resistance of the HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agha H, Fleury J-B, Galerne Y (2014) Polypyrrole coating films for nanoparticles. Colloids Surf A 462:217–224. doi:10.1016/j.colsurfa.2014.09.016

    Article  CAS  Google Scholar 

  • Badawy AW, Nady H, Negem M (2014) Cathodic hydrogen evolution in acidic solutions using electrodeposited nano-crystalline NieCo Cathodes. Int J Hydrog Energy 39:10824–10832. doi:10.1016/j.ijhydene.2014.05.049

    Article  CAS  Google Scholar 

  • Carquigny S, Segut O, Lakard B, Lallemand F, Fievet P (2008) Effect of electrolyte solvent on the morphology of polypyrrole films: application to the use of polypyrrole in pH sensors. Synth Met 158:453–461. doi:10.1016/j.synthmet.2008.03.010

    Article  CAS  Google Scholar 

  • Castro CMD, Vieira SN, Goncalves RA, Brito-Madurro AG, Madurro JM (2008) Electrochemical and morphologic studies of nickel incorporation on graphite electrodes modified with polytyramine. J Mater Sci 43:475–482. doi:10.1007/s10853-007-1880-7

  • Chen W-F, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed 51:6131–6135. doi:10.1002/anie.201200699

    Article  CAS  Google Scholar 

  • Chen W-F, Wang C-H, Sasaki K, Marinkovic N, Xu W, Muckerman JT, Zhu Y, Adzic RR (2013) Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ Sci 6:943–951. doi:10.1039/C2EE23891H

    Article  CAS  Google Scholar 

  • Chhetri M, Gupta U, Yadgarov L, Rosentsveig R, Tenne R, Rao CN (2015) Beneficial effect of Re doping on the electrochemical HER activity of MoS2 fullerenes. R Soc Chem. doi:10.1039/c5dt02562a

    Google Scholar 

  • Curtin L, Komplin G, Pietro W (1988) Diffusive anion exchange in polypyrrole films. J Phys Chem 92:3–12

    Article  Google Scholar 

  • Dalla Corte DA, Torres C, Correa PdS, Rieder ES, Malfatti CdF (2012) The hydrogen evolution reaction on nickel-polyaniline composite electrodes. Int J Hydrog Energy 37:3025–3032. doi:10.1016/j.ijhydene.2011.11.037

    Article  CAS  Google Scholar 

  • Damian A, Omanovic S (2006) Ni and Ni/Mo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix. J Power Sources 158:464–476. doi:10.1016/j.jpowsour.2005.09.007

    Article  CAS  Google Scholar 

  • González-Buch C, Herraiz-Cardona I, Ortega EM, García-Antón J, Pérez-Herranz V (2013) Development of Ni-Mo, Ni-W and Ni-Co macroporous materials for hydrogen evolution reaction. Chem Eng Trans 32:865–870. doi:10.3303/CET1332145

    Google Scholar 

  • Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299. doi:10.1021/ja201269b

    Article  Google Scholar 

  • Hou D, Zhou W, Liu X, Zhou K, Xie J, Li G, Chen S (2015) Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction. Electrochim Acta 166:26–31. doi:10.1016/j.electacta.2015.03.067

    Article  CAS  Google Scholar 

  • Jerkiewicz G, Feliu-Martinez J, Popov NB (2001) Hydrogen at surfaces and interfaces

  • Jiang N, You B, Sheng M, Sun Y (2015) Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew Chem Int Ed 54:6251–6254. doi:10.1002/anie.201501616

    Article  CAS  Google Scholar 

  • Kaninski MPM, Saponjic DP, Perovic MI, Maksic DA, Nikolic MV (2011) Electrochemical characterization of the Ni–W catalyst formed in situ during alkaline electrolytic hydrogen production—Part II. Appl Catal A 405:29–35. doi:10.1016/j.apcata.2011.07.015

    Article  CAS  Google Scholar 

  • Kerner Z, Pajkossy T (2000) On the origin of capacitance dispersion of rough electrodes. Electrochim Acta 46:207–211. doi:10.1016/S0013-4686(00)00574-0

    Article  CAS  Google Scholar 

  • Kim JT, Seol SK, Je JH, Hwu Y, Margaritondo G (2009) The microcontainer shape in electropolymerization on bubbles. Appl Phys Lett 94:034103. doi:10.1063/1.3073861

    Article  Google Scholar 

  • Koca A (2009) Copper phthalocyanine complex as electrocatalyst for hydrogen evolution reaction. Electrochem Commun 11:838–841. doi:10.1016/j.elecom.2009.02.001

    Article  CAS  Google Scholar 

  • Liu B, He JB, Chen YJ, Wang Y, Deng N (2013) Phytic acid-coated titanium as electrocatalyst of hydrogen evolution reaction in alkaline electrolyte. Int J Hydrogen Energy 38:3130–3136. doi:10.1016/j.ijhydene.2012.12.099

    Article  CAS  Google Scholar 

  • Lu Q, Hutchings GS, Yu W, Zhou Y, Forest RV, Tao R, Rosen J, Yonemoto BT, Cao Z, Zheng H, Xiao JQ, Jiao F, Chen JG (2015) Highly porous non-precious bimetallic electrocatalyst for efficient hydrogen evolution. Nat Commun 6:6567. doi:10.1038/ncomms7567

    Article  CAS  Google Scholar 

  • Lukowski M, Daniel AS, English CR, Meng F, Forticaux A, Hamers RJ, Jin S (2014) Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ Sci 7:2608–2613. doi:10.1039/C4EE01329H

    Article  CAS  Google Scholar 

  • Makhloufi L, Hammache H, Saidani B (2000) Electrocatalytic reduction of proton on polypyrrole coatings onto aluminium modified by the electrochemical cementation process. Electrochem Commun 2:552. doi:10.1016/S1388-2481(00)00081-3

    Article  CAS  Google Scholar 

  • Mo X, Wang J, Wang Z, Wang S (2004) The application of polypyrrole fibrils in hydrogen evolution reaction. Synth Met 142:217–221. doi:10.1016/j.synthmet.2003.09.002

    Article  CAS  Google Scholar 

  • Mourato A, Cabrita JF, Ferraria AM, Botelho, do Rego AM, Abrantes LM (2010) Electrocatalytic activity of polypyrrole films incorporating palladium particles. Catal Today 158:2–11. doi:10.1016/j.cattod.2010.07.004

  • Navarro-Flores E, Chong Z, Omanovic S (2005) Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J Mol Catal A Chem l 226:179–197. doi:10.1016/j.molcata.2004.10.029

    Article  CAS  Google Scholar 

  • Omanovic S, Roscoe SG (2000) Interfacial behavior of β-lactoglobulin at a stainless steel surface: an electrochemical impedance spectroscopy study. J Colloid Interface Sci 227:452. doi:10.1006/jcis.2000.6913

    Article  CAS  Google Scholar 

  • Páramo-Garcia U et al (2014) Polypyrrole microcontainer structures and doughnuts designed by electrochemical oxidation: an electrochemical and scanning electron microscopy study. e-Polymers 14:75–84. doi:10.1515/epoly-2013-0001

  • Patru A, Antitomaso P, Sellin R, Jerez N, Taberna PL, Favier F (2013) Size and strain dependent activity of Ni nano and micro particles for hydrogen evolution reaction. Int J Hydrog Energy 38:11695–11708. doi:10.1016/j.ijhydene.2013.06.045

    Article  CAS  Google Scholar 

  • Qu L, Shi G, Yuan J, Han G, Feugen Ch (2004) Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid. J Electroanal Chem 56:149–156. doi:10.1016/j.jelechem.2003.07.028

    Article  Google Scholar 

  • Sun L, Ca DV, Cox JA (2005) Electrocatalysis of the hydrogen evolution reaction by anocomposites of poly(amidoamine)-encapsulated platinum nanoparticles and phosphotungstic acid. J Solid State Electrochem 9:816–822. doi:10.1007/s10008-005-0008-8

    Article  CAS  Google Scholar 

  • Tian Y, Liu M, Zhou X, Huang L, Liu Z, An B (2014) Inhibition of hydrogen evolution reaction on polypyrrole-modified electrode in acid media. J Electrochem Soc 16:23–27. doi:10.1149/2.032403jes

    Google Scholar 

  • Torelli DA, Harrison DP, Lapides AM, Meyer TJ (2013) Strategies for stabilization of electrodeposited metal particles in electropolymerized films for H2O oxidation and H+ reduction. ACS Appl Mater Interfaces 5:7050–7057. doi:10.1021/am401331k

    Article  CAS  Google Scholar 

  • Vaduva CC, Vaszilcsin N, Kellenberger A, Medeleanu M (2011) Catalytic enhancement of hydrogen evolution reaction on copper in the presence of benzylamine. Int J Hydrogen Energy 36:6994–7001. doi:10.1016/j.ijhydene.2011.03.076

    Article  CAS  Google Scholar 

  • Vesborg PCK, Seger B, Chorkendorff I (2015) Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett 951–957. doi:10.1021/acs.jpvlett.5b00306

  • Vigdorovich VI, Tsygankova LE, Balybin DV (2011) Influence of guanidine on kinetics of hydrogen evolution reaction on iron and its diffusion through steel membrane in acidic chloride media. J Electroanal Chem 653:1–6. doi:10.1016/j.jelechem.2011.01.026

    Article  CAS  Google Scholar 

  • Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acid and basic solutions. Angew Chem Int Ed 51:12703–12706. doi:10.1002/anie.201207111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project VVGS-2014-187 and Project VEGA 1/0074/17 of the Slovak Scientific Grant Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Sabalová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabalová, M., Oriňaková, R., Oriňak, A. et al. Electrocatalytic hydrogen evolution in acidic media using electrodeposited Ag/PPy and Ni/PPy hybrid materials. Chem. Pap. 71, 513–523 (2017). https://doi.org/10.1007/s11696-016-0079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0079-2

Keywords

Navigation