Skip to main content

Advertisement

Log in

Mitochondrial DNA Content in Human Omental Adipose Tissue

  • Clinical Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Impairment of mitochondrial function plays an important role in obesity and the development of insulin resistance. The aim of this project was to investigate the mitochondrial DNA copy number in human omental adipose tissue with respect to obesity.

Methods

The mitochondrial DNA (mtDNA) content per single adipocyte derived from abdominal omental adipose tissue was determined by quantitative RT-PCR in a group of 75 patients, consisting of obese and morbidly obese subjects, as well as non-obese controls. Additionally, basal metabolic rate and fat oxidation rate were recorded and expressed as total values or per kilogram fat mass.

Results

MtDNA content is associated with obesity. Higher body mass index (BMI) resulted in a significantly elevated mtDNA count (ratio = 1.56; p = 0.0331) comparing non-obese (BMI < 30) to obese volunteers (BMI ≥ 30). The mtDNA count per cell was not correlated with age or gender. Diabetic patients showed a trend toward reduced mtDNA content. A seasonal change in mtDNA copy number could not be identified. In addition, a substudy investigating the basal metabolic rate and the fasting fat oxidation did not reveal any associations to the mtDNA count.

Conclusions

The mtDNA content per cell of omental adipose tissue did not correlate with various clinical parameters but tended to be reduced in patients with diabetes, which may partly explain the impairment of mitochondrial function observed in insulin resistance. Furthermore, the mtDNA content was significantly increased in patients suffering from obesity (BMI above 30). This might reflect a compensatory response to the development of obesity, which is associated with impairment of mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  PubMed  Google Scholar 

  2. Diamond F. The endocrine function of adipose tissue. Growth Genet Horm. 2002;18(2):17–22.

    Google Scholar 

  3. Trayhurn P. Adipocyte biology. Obes Rev. 2007;8(Suppl. 1):41–4.

    Article  CAS  PubMed  Google Scholar 

  4. Maassen JA. Mitochondrial dysfunction in adipocytes: the culprit in type 2 diabetes? Diabetologia. 2006;49(4):619–20.

    Article  CAS  PubMed  Google Scholar 

  5. Choo HJ, Kim JH, Kwon OB, et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia. 2006;49:784–91.

    Article  CAS  PubMed  Google Scholar 

  6. Guilherme A, Virbasius JV, Czech MP, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77.

    Article  CAS  PubMed  Google Scholar 

  7. Petersen KF, Befroy D, Shulman GI, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;500(5622):1140–2.

    Article  Google Scholar 

  8. Civitarese AE, Ravussin E. Minireview: mitochondrial energetics and insulin resistance. Endocrinology. 2007;149(3):950–4.

    Article  Google Scholar 

  9. Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol. 1981;91(3):227s–55.

    Article  CAS  PubMed  Google Scholar 

  10. Kuroshima A. Brown adipose tissue thermogenesis as a physiological strategy for adaptation. Jpn J Physiol. 1993;43(43):117.

    Article  CAS  PubMed  Google Scholar 

  11. Justo R, Oliver J, Gianotti M. Brown adipose tissue mitochondrial subpopulations show different morphological and thermogenic characteristics. Mitochondrion. 2005;5(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  12. Collins TJ, Bootman MD. Mitochondria are morphologically heterogenous within cells. J Exp Biol. 2003;206:1993–2000.

    Article  PubMed  Google Scholar 

  13. Menziens RA, Gold PH. The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem. 1970;246(8):2425–9.

    Google Scholar 

  14. Masuyama M, Iida R, Matsuki T, et al. Quantitative change in mitochondrial DNA content in various mouse tissues during aging. Biochim Biophys Acta. 2005;1723:302–8.

    CAS  PubMed  Google Scholar 

  15. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357–68.

    Article  CAS  PubMed  Google Scholar 

  16. Wu Z, Puigserver P, Spiegelman BM, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–24.

    Article  CAS  PubMed  Google Scholar 

  17. van Marken Lichtenbelt WD, Vanhommering JW, Jaap Teule GJ, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    Article  PubMed  Google Scholar 

  18. Chan DC. Mitochondrial fusion and fission in mammals. Ann Rev Cell Dev Biol. 2006;22:79–99.

    Article  CAS  Google Scholar 

  19. Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 2007;8:870–9.

    Article  CAS  PubMed  Google Scholar 

  20. Mingrone G, Manco M, Zorzano A, et al. Could the low level of expression of the gene encoding skeletal muscle mitofusin-2 account for the metabolic inflexibility of obesity? Diabetologia. 2005;48:2108–14.

    Article  CAS  PubMed  Google Scholar 

  21. Bach D, Pich S, Zorzano A, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. J Biol Chem. 2003;278(19):17190–7.

    Article  CAS  PubMed  Google Scholar 

  22. Wilson-Fritch L, Nicoloro S, Corvera S, et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest. 2004;114(9):1281–9.

    CAS  PubMed  Google Scholar 

  23. Peterli R, Wöllnerhanssen B, von Flüe M, et al. Prospective study of a two-stage operative concept in the treatment of morbid obesity: primary Lap-Band followed if needed by sleeve gastroectomy with duodenal switch. Obes Surg. 2007;17:334–40.

    Article  PubMed  Google Scholar 

  24. Woelnerhanssen B, Kern B, Peterli R, et al. Predictors of outcome in treatment of morbid obesity by laparoscopic adjustable gastric banding: results of a prospective study of 380 patients. Surgery of Obesity and Related Disease. 2008;4:500–6.

    Article  Google Scholar 

  25. Bogacka I, Xie H, Smith SR, et al. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54:1392–9.

    Article  CAS  PubMed  Google Scholar 

  26. Pinheiro JC, Bates DM. Mixed-effects models in S and S-PLUS. Springer: New York; 2000.

    Google Scholar 

  27. Barazzoni R, Short KR, Sreekumaran Nair K. Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. JBC. 2000;275(5):3343–7.

    Article  CAS  Google Scholar 

  28. Colom B, Alcolea MP, Garcia-Palmer FJ, et al. Skeletal muscle of female rats exhibit higher mitochondrial mass and oxidative-phosphorylative capacities compared to males. Cell Physiol Biochem. 2007;19:205–12.

    Article  CAS  PubMed  Google Scholar 

  29. Mollica MP, Lionetti L, Iossa S, et al. Cold exposure differently influences mitochondrial energy efficiacy in rat liver and skeletal muscle. FEBS Lett. 2005;579:1978–82.

    Article  CAS  PubMed  Google Scholar 

  30. Needergard J, Bengtssen T. Unexpected evidence of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–52.

    Article  Google Scholar 

  31. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21(6):697–738.

    Article  CAS  PubMed  Google Scholar 

  32. Maassen JA. Mitochondrial diabetes: pathophysiology, clinical presentation, and genetic analysis. Am J Med Gen (Semin. Med. Genet.). 2002;115:66–70.

    Article  Google Scholar 

  33. Marcuello A, González-Alonso J, Díez-Sánchez C, et al. Skeletal muscle mitochondrial DNA content in exercising humans. J Appl Physiol. 2005;99:1372–7.

    Article  CAS  PubMed  Google Scholar 

  34. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  CAS  PubMed  Google Scholar 

  35. Kaaman M, Sparks LM, Arner P, et al. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia. 2007;50:2526–33.

    Article  CAS  PubMed  Google Scholar 

  36. Miller FJ, Rosenfeldt FL, Nagley P, et al. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of changes of copy number with age. Nucleic Acids Res. 2003;31(11):e61.

    Article  PubMed  Google Scholar 

  37. Rajala MW, Scherer PE. Minireview: the adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. 2003;144(9):3765–73.

    Article  CAS  PubMed  Google Scholar 

  38. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nat Med. 2006;444:847–53.

    Article  CAS  Google Scholar 

  39. Ferranti SD, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem. 2008;54:945–55.

    Article  PubMed  Google Scholar 

  40. Robin ED, Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol. 1988;136:507–13.

    Article  CAS  PubMed  Google Scholar 

  41. Cypess AM, Lehmann S, Kahn CR, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed  Google Scholar 

  42. Virtanen KA, Lidell ME, Nuutila P, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.

    Article  CAS  PubMed  Google Scholar 

  43. Befroy DE, Petersen KF, Shulman GI, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 2007;56:1376–81.

    Article  CAS  PubMed  Google Scholar 

  44. Hellmér J, Marcus C, Arner P, et al. Mechanisms for differences in lipolysis between human subcutaneous and omental fat cells. J Clin Endocrinol Metab. 1992;75(1):15–20.

    Article  PubMed  Google Scholar 

  45. van Harmelen V, Dicker A, Arner P, et al. Increased lipolysis and decreased leptin production by human omental as compared with subcutaneous preadipocytes. Diabetes. 2002;51:2029–36.

    Article  PubMed  Google Scholar 

  46. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83(3):847–50.

    Article  CAS  PubMed  Google Scholar 

  47. Arvidsson E, Blomqvist L, Ryden M. Depot-specific differences in perilipin mRNA but not protein expression in obesity. J Intern Med. 2004;255:595–601.

    Article  CAS  PubMed  Google Scholar 

  48. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance. Diabetes. 2000;49:677–83.

    Article  CAS  PubMed  Google Scholar 

  49. Capkova M, Houstek J, Zeman J, et al. Activities of cytochrome c oxidase and citrate synthase in lymphocates of obese and normal-weight subjects. IJO. 2002;26:1110–7.

    Article  CAS  Google Scholar 

  50. Kim JY, Hickner RC, Houmard JA, et al. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocriol Metab. 2000;279:1039–44.

    Google Scholar 

  51. Crescenzo R, Bianco F, Iossa S, et al. Alterations in hepatic mitochondrial compartment in a model of obesity and insulin resistance. Obesity. 2008;16:958–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Lindinger.

Additional information

The authors hereby disclose any commercial interest in this present study. We thank the European Society of Pediatric Endocrinology for financial support by their donation of the 2007 IPSEN Collaborative Project Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindinger, A., Peterli, R., Peters, T. et al. Mitochondrial DNA Content in Human Omental Adipose Tissue. OBES SURG 20, 84–92 (2010). https://doi.org/10.1007/s11695-009-9987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-009-9987-3

Keywords

Navigation