Skip to main content

Advertisement

Log in

Optimization of vacuum-assisted microwave drying parameters of green bell pepper using response surface methodology

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Green bell pepper was dried under vacuum-assisted microwave drying condition and the process was optimized using response surface methodology. The effect of microwave power (100–300 W) and vacuum level (200–600 mm Hg) were observed on the responses, viz. green color ratio, rehydration ratio, hardness, apparent density ratio, drying time and specific energy consumption. A central composite face-centered design was used to develop predictive regression models for the responses. Analysis of variance showed that quadratic model best fitted the experimental data. The microwave power level had greater effect on the quality attributes of green bell pepper; nevertheless at higher vacuum level the dried products had better quality. The optimum drying conditions were determined to be 284.4 W microwave power, 600 mm Hg vacuum level and the optimized value of the responses were obtained as green color ratio of 80.70%, rehydration ratio of 10.75, hardness of 152.98 N, apparent density ratio of 76.02%, drying time of 78 min, and specific energy consumption of 6.57 MJ/kg. Validation experiment was carried out at derived optimum condition to verify the prediction and adequacy of the models. Close agreement between experimental and predicted values was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADR:

Apparent density ratio (%)

β :

Model coefficient

D(x):

Desirability function

g:

Gram

GBP:

Green bell pepper

GHz:

Gigahertz

GR:

Green color ratio (%)

kcal:

Kilocalorie

M:

Microwave power, W

MHz:

Megahertz

RR:

Rehydration ratio

RSM:

Response surface methodology

SEC:

Specific energy consumption (MJkg-1)

V:

Vacuum level, mm Hg

VAM:

Vacuum-assisted microwave;

W:

Watt

X:

Code independent variable

Y:

Code dependent variable

i, j :

Indices of response variables

k :

Indices of estimated model coefficient

n :

Total number of responses

References

  1. V. Kumar, S.L. Shrivastava, Int. J. Food Stud. 6(1), 67–81 (2017)

    Article  Google Scholar 

  2. Y. Lee, L.R. Howard, B. VillalÓN, J Food Sci. 60(3), 473–476 (1995)

    Article  CAS  Google Scholar 

  3. T.Y. Tunde-Akintunde, T.J. Afolabi, O.B. Akintunde, J. Food Eng. 68(4), 439–442 (2005)

    Article  Google Scholar 

  4. B.I.O. Ade-Omowaye et al., J. Food Eng. 60(1), 89–98 (2003)

    Article  Google Scholar 

  5. L. Somogyi, B. Luh, Vegetable dehydration, 2 edn. Commercial Vegetable Processing. (Van Nostrand Reinhold, New York, 1988)

    Google Scholar 

  6. K.S. Jayaraman, D.K. Das Gupta, in Drying of Fruits and Vegetables, in Handbook of Industrial Drying, 4th edn., ed. by A.S. Mujumdar (CRC Press, Boca Raton, 2014), pp. 611–635

    Google Scholar 

  7. A. Kilic, J. Food Process Eng. 40(2), e12378 (2017)

    Article  Google Scholar 

  8. C. Scaman, T. Durance, in Combined Microwave Vacuum Drying, in Emerging Technologies for Food Processing, ed. by D. Sun, (Elsevier: Amsterdam, 2005), pp. 507–534

    Chapter  Google Scholar 

  9. A.S. Mujumdar, C.L. Law, Food Bioprocess Technol. 3(6), 843–852 (2010)

    Article  Google Scholar 

  10. I. Doymaz, O. İsmail, Food Sci. Biotechnol. 19(6), 1449–1455 (2010)

    Article  Google Scholar 

  11. F. Kaymak-Ertekin, J. Food Sci. 67(1), 168–175 (2002)

    Article  CAS  Google Scholar 

  12. U. S. Pal, M. K. Khan, S. N. Mohanty, Drying Technol. 26(12), 1584–1590 (2008)

    Article  CAS  Google Scholar 

  13. D. Arslan, M. Özcan, Food Bioprod. Process. 89(4), 504–513 (2011)

    Article  Google Scholar 

  14. S. Kaleemullah, R. Kailappan, J. Food Eng 76(4), 531–537 (2006)

    Article  Google Scholar 

  15. A. Vega-Gálvez et al., J. Food Eng. 85(1), 42–50 (2008)

    Article  Google Scholar 

  16. A. Vega-Gálvez et al., Food Chem. 117(4), 647–653 (2009)

    Article  Google Scholar 

  17. E. Abano, H. Ma, W. Qu, J. Food Qual. 35(3), 159–168 (2012)

    Article  Google Scholar 

  18. J. Yongsawatdigul, S. Gunasekaran, J. Food Process. Preserv. 20(2), 145–156 (1996)

    Article  Google Scholar 

  19. J. Bondaruk, M. Markowski, W. Blaszczak, J. Food Eng 81(2), 306–312 (2007)

    Article  Google Scholar 

  20. Z. W. Cui, et al., Drying Technol. 26(12), 1517–1523 (2008)

    Article  CAS  Google Scholar 

  21. A. Figiel, J. Food Eng. 98(4), 461–470 (2010)

    Article  Google Scholar 

  22. P. Sham, C. Scaman, T. Durance, J. Food Sci. 66(9), 1341–1347 (2001)

    Article  CAS  Google Scholar 

  23. Z.W. Cui, S.Y. Xu, D.W. Sun, Drying Technol. 21(7), 1173–1184 (2003)

    Article  Google Scholar 

  24. C. Kiranoudis, E. Tsami, Z. Maroulis, Drying Technol. 15(10), 2421–2440 (1997)

    Article  Google Scholar 

  25. P. Sutar, S. Prasad, Drying Technol, 29(3), 371–380 (2011)

  26. M. Ozdemir, et al., LWT-Food Sci. Technol. 41(10), 2044–2050 (2008)

    Article  CAS  Google Scholar 

  27. G.E.P. Box, K.B. Wilson, in On the Experimental Attainment of Optimum Conditions, in Breakthroughs in Statistics: Methodology and Distribution, ed. by S. Kotz, N.L. Johnson (Springer, New York, 1992), pp. 270–310

    Chapter  Google Scholar 

  28. B.K. Mehta et al., Appl. Math. 03(10), 8 (2012)

    Article  Google Scholar 

  29. P. S. Madamba, LWT Food Sci. Technol. 35(7), 584–592 (2002)

    Article  CAS  Google Scholar 

  30. C. Liyana-Pathirana, F. Shahidi, Food Chem. 93(1), 47–56 (2005)

    Article  CAS  Google Scholar 

  31. I. Eren, F. Kaymak-Ertekin, J. Food Eng. 79(1), 344–352 (2007)

    Article  Google Scholar 

  32. A. Datta, Fundamentals of heat and moisture transport for microwaveable food product and process development. In Handbook of microwave technology for food applications, ed. by R. Anantheswaran (Marcel Dekker, New York, 2001), pp. 115–172

    Google Scholar 

  33. J. Lee et al., J. Food Compos. Anal. 13(1), 45–57 (2000)

    Article  CAS  Google Scholar 

  34. D.C. Montgomery, Design and Analysis of Experiments: Graph. Darst. (John Wiley & Sons, New York, 1984)

    Google Scholar 

  35. S. Giri, S. Prasad, 25(5), 901–911 (2007)

  36. A. Chauhan, A. Srivastava, Drying Technol. 27(6), 761–769 (2009)

    Article  Google Scholar 

  37. D. Kumar, S. Prasad, G.S. Murthy, J. Food Sci. Technol. 51(2), 221–232 (2014)

    Article  Google Scholar 

  38. S. Giri, S. Prasad, Int. J. Food Prop. 9(3), 409–419 (2006)

    Article  Google Scholar 

  39. G. Sharma, S. Prasad, J. Food Eng. 50(2), 99–105 (2001)

    Article  Google Scholar 

  40. R. Myers, D. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments. (Wiley, New York, 1995)

    Google Scholar 

  41. O. Alves-Filho et al., Dehydration of Green Peas Under Atmospheric Freeze-Drying Conditions. (XIV Simposio Internacional de Secado, São Paulo, 2004)

    Google Scholar 

  42. R. Guiné, et al., 9° Encontro de Química dos Alimentos 2009, 4–4, (2009)

    Google Scholar 

  43. A. Marabi et al., J. Food Eng. 72(3), 211–217 (2006)

    Article  Google Scholar 

  44. P.P. Lewicki, J. Food Eng. 36(1), 81–87 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Shrivastava, S.L. Optimization of vacuum-assisted microwave drying parameters of green bell pepper using response surface methodology. Food Measure 11, 1761–1772 (2017). https://doi.org/10.1007/s11694-017-9557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9557-7

Keywords

Navigation