Skip to main content
Log in

Characteristics of ciprofloxacin resistant Campylobacter spp. isolated from chicken meat in Turkey

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The objective of the current study was to investigate mutations in the gyrA and 23S rRNA gene fragments the high level ciprofloxacin resistant (HL-CipR) Campylobacter isolates (C. jejuni n = 6 and and C. coli n = 9) obtained from chicken meat samples, in Turkey. PCR-based restriction fragment length polymorphism (RFLP) was used to characterize these isolates. In addition, the presence of several virulence traits among these isolates was also examined. Of the 15 HL-CipR Campylobacter strains, there were eight unique RFLP banding patterns. All HL-CipR Campylobacter strains had mutations in codon 86 (Thr-86 to Ile) in the gyrA gene. Four C. jejuni isolates had missense mutation of Asp-203 to Ser, whereas one C. jejuni strain also presented a change at Ala-40 to Ser. A2075G substitution in the 23S rRNA gene was identified in five isolates (C. coli n = 3 and C. jejuni n = 2), whereas none of the isolates had A2074G substitution. The tetO gene conferring resistance to tetracycline were observed among five Campylobacter isolates. Of Campylobacter strains, 13 (86.6 %) were found to be positive for one or more virulence factors, the cdt genes being the most detected. The results of the current study extends the current knowledge about molecular mechanisms for erythromycin and ciprofloxacin resistance as well as virulence traits by investigation of HL-CipR Campylobacter isolates from chicken meat sold in Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), J. EFSA 12, 3547 (2014)

    Article  Google Scholar 

  2. G.M. Ruiz-Palacios, Clin. Infect. Dis. 44, 701–703 (2007)

    Article  Google Scholar 

  3. J.P. Butzler, Clin. Microbiol. Infect. 10, 868–876 (2004)

    Article  Google Scholar 

  4. M.C. Peterson, West. J. Med. 161, 148–152 (1994)

    CAS  Google Scholar 

  5. R.A. Batchelor, B.M. Pearson, L.M. Friis, P. Guerry, J.M. Wells, Microbiology 150, 3507–3517 (2004)

    Article  CAS  Google Scholar 

  6. M.E. Konkel, J.E. Christensen, A.S. Dhillon, A.B. Lane, R. Hare-Sanford, D.M. Schaberg, C.L. Larson, Appl. Environ. Microbiol. 7, 2297–2305 (2007)

    Article  Google Scholar 

  7. M. Lehtopolku, U.M. Nakari, P. Kotilainen, P. Huovinen, A. Siitonen, A.J. Hakanen, Antimicrob. Agent. Chemother. 54, 1232–1236 (2010)

    Article  CAS  Google Scholar 

  8. K. Wieczorek, J. Osek, Biomed Res. Int. (2013). doi:10.1155/2013/340605

    Google Scholar 

  9. P.N. Gaunt, L.J.V. Piddock, J. Antimicrob. Chemother. 37, 747–757 (1996)

    Article  CAS  Google Scholar 

  10. L.J.V. Piddock, J. Antimicrob. Chemother. 36, 891–898 (1995)

    Article  CAS  Google Scholar 

  11. S. Payot, J.M. Bolla, D. Corcoran, S. Fanning, F. Megraud, Q. Zhang, Microb. Infect. 8, 1967–1971 (2006)

    Article  CAS  Google Scholar 

  12. D. Bolton, A. Patriarchi, A. Fox, S. Fanning, Food Control 30, 222–226 (2013)

    Article  CAS  Google Scholar 

  13. D. Corcoran, T. Quinn, L. Cotter, S. Fanning, FEMS Microbiol. Lett. 253, 39–46 (2005)

    Article  CAS  Google Scholar 

  14. G. Zirnstein, Y. Li, B. Swamınathan, F. Angulo, J. Clin. Microbiol. 37(10), 3276–3280 (1999)

    CAS  Google Scholar 

  15. R. Alonso, E. Mateo, E. Churruca, I. Martinez, C. Girbau, A. Ferna´ndez-Astorga, J. Microbiol. Meth. 63, 99–103 (2005)

    Article  CAS  Google Scholar 

  16. M.R. Khanna, S.P. Bhavsar, B.P. Kapadnis, Lett. Appl. Microbiol 43, 84–90 (2006)

    Article  CAS  Google Scholar 

  17. D.D. Bang, E.M. Nielsen, F. Scheutz, K. Pedersen, K. Handberg, M. Madsen, J. Appl. Microbiol. 94, 1003–1014 (2003)

    Article  CAS  Google Scholar 

  18. S. Datta, H. Niwa, K. Itoh, J. Med. Microbiol. 52, 345–348 (2003)

    Article  CAS  Google Scholar 

  19. D.J. Bacon, R.A. Alm, D.H. Burr, L. Hu, D.J. Kopecko, C.P. Ewing, T.J. Trust, P. Guerry, Infect. Immun. 68, 4384–4390 (2000)

    Article  CAS  Google Scholar 

  20. L. Moran, C. Kelly, M. Cormican, S. McGettrick, R.H. Madden, Lett. Appl. Microbiol. 52, 614–618 (2011)

    Article  CAS  Google Scholar 

  21. G. Wang, C.G. Clark, T.M. Taylor, C. Pucknell, C. Barton, L. Price, D.L. Woodward, F.G. Rodgerst, J. Clin. Microbiol. 40, 4744–4747 (2002)

    Article  CAS  Google Scholar 

  22. I. Nachamkin, K. Bohachick, C.M. Patton, J. Clin. Microbiol. 31, 1531–1536 (1993)

    CAS  Google Scholar 

  23. CLSI, Approv. Guidel. M45-A, 26 (2008)

    Google Scholar 

  24. E. Sifré, B.A. Salha, A. Ducournaua, P. Floch, H. Chardon, F. Mégraud, P. Lehours, J. Microbiol. Meth. 119, 206–213 (2015)

    Article  Google Scholar 

  25. D. Corcoran, T. Quinn, L. Cotter, S. Fanning, Int. J. Antimicrob. Agent 27, 40–45 (2006)

    Article  CAS  Google Scholar 

  26. A. Pratt, V. Korolik, J. Antimicrob. Chemother. 55, 452–460 (2005)

    Article  CAS  Google Scholar 

  27. S. Savaşan, A. Çiftçi, K.S. Diker, J. Turk, Vet. Anim. Sci. 28, 391–397 (2004)

    Google Scholar 

  28. S. Kittl, G. Heckel, B. M. Korczak, P. Kuhnert, Source attribution of human Campylobacter isolates by MLST and Fla-typing and association of genotypes with quinolone resistance. Plos One, 8, (2013). doi:10.1371/journal.pone.0081796

  29. B.M. Korczak, M. Zurfluh, S. Emler, J. Kuhn-Oertli, P. Kuhnert, J. Clin. Microbiol. 47, 1996–2007 (2009)

    Article  CAS  Google Scholar 

  30. L. Petersen, S.L.W. On, Lett. Appl. Microbiol 31, 14–19 (2000)

    Article  CAS  Google Scholar 

  31. H.B. Ertaş, B. Çetinkaya, A. Muz, H. Öngör, Int. J. Food Microbiol. 94, 203–209 (2004)

    Article  Google Scholar 

  32. K. Wieczorek, J. Osek, Food Microbiol. 49, 161–165 (2015)

    Article  CAS  Google Scholar 

  33. J. Zhou, M. Zhang, W. Yang, Y. Fang, G. Wang, F. Hou, Int. J. Infect. Dis. 42, 28–33 (2016)

    Article  CAS  Google Scholar 

  34. T. Nakajima, A. Tazumi, S. Nakanishi, J. Xu, L. Han, N. Misawa, J.E. Moore, B.C. Millar, M. Matsuda, Ann. Microbiol. 62, 1495–1500 (2012)

    Article  CAS  Google Scholar 

  35. N.M. Iovine, Virulence 4(3), 230–240 (2013)

    Article  Google Scholar 

  36. S.S. Qin, C.M. Wu, Y. Wang, B. Jeon, Z.Q. Shen, Y. Wang, Q. Zhang, J.Z. Shen, Int. J. Food Microbiol. 146, 94–98 (2011)

    Article  CAS  Google Scholar 

  37. B.S. Frasao, V. Medeiros, A.V. Barbosa, W.S. Aguiar, F.F. Santos, D.L.C. Abreu, M.M. Clementino, M.H.C. Aquino, Ciência Rural, 45, 2013–2018 (2015)

    Article  Google Scholar 

  38. T. Kayman, S. Abay, H. Hızlısoy, Mikrobiyol. Bul. 47, 230–239 (2013)

    Article  CAS  Google Scholar 

  39. K. Wieczorek, E. Denis, O. Lynch, J. Osek, Food Microbiol. 34, 130–136 (2013)

    Article  CAS  Google Scholar 

  40. M. N. Acik, M. Karahan, H. Ongor, B. Cetinkaya, Foodborne Pathog. Dis. (2013). doi:10.1089/fpd.2012.1447

    Google Scholar 

Download references

Acknowledgments

This study was supported by Mustafa Kemal University Scientific Research Fund (Project Number: BAP-10380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemil Kurekci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurekci, C., Pehlivanlar Önen, S. Characteristics of ciprofloxacin resistant Campylobacter spp. isolated from chicken meat in Turkey. Food Measure 11, 586–591 (2017). https://doi.org/10.1007/s11694-016-9426-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9426-9

Keywords

Navigation