Skip to main content
Log in

A maltose, L-rhamnose sensor based on porous Cu foam and electrochemical amperometric i-t scanning method

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

A maltose, L-rhamnose sensor based on porous Cu foam and electrochemical techniques was investigated in this paper. Cu foam material was prepared and characterized by scanning electron microscopy (SEM). The electro-oxidation reaction process of sweeteners occurred on Cu foam electrode was evaluated by cyclic voltammetry (CV) scanning. At an applied potential of 0.5 V, the linear range for maltose is 0.18–3.47 mM with sensitivity of 1.0492 mA cm−2 mM−1. The limit of detection (LOD) was 15.86 μM (S/N = 3). The linear range for maltose is 0.18–3.47 mM with sensitivity of 0.6881 mA cm−2 mM−1. The LOD was 24.18 μM (S/N = 3). Compared with Cu sheet electrode, Cu foam electrode showed higher current response towards maltose and L-rhamnose, leading to enhanced electrocatalytic activity, higher sensitivity, and lower LOD. Sweetener qualitative discrimination was carried out by stochastic resonance (SR) signal-to-noise ratio (SNR) spectrum eigen peak located noise intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Váradit, N. Adányi, G. Nagy, J. Rezessy-Szabó, Studying the bienzyme reaction with amperometric detection for measuring maltose. Biosens. Bioelectron. 8, 339–345 (1993)

    Article  Google Scholar 

  2. O.O. Soldatkin, V.M. Peshkova, O.Y. Saiapina, I.S. Kucherenko, O.Y. Dudchenko, V.G. Melnyk, O.D. Vasylenko, L.M. Semenycheva, A.P. Soldatkin, S.V. Dzyadevych, Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose. Talanta 115, 200–207 (2013)

    Article  CAS  Google Scholar 

  3. N.C.H. Le, M. Gel, Y.G. Zhu, H. Dacres, A. Anderson, S.C. Trowell, Real-time, continuous detection of maltose using bioluminescence resonance energy transfer (BRET) on a microfluidic system. Biosens. Bioelectron. 62, 177–181 (2014)

    Article  CAS  Google Scholar 

  4. M.F. Giraud, J.H. Naismith, The rhamnose pathway. Curr. Opin. Struct. Biol. 10, 687–696 (2000)

    Article  CAS  Google Scholar 

  5. O.M. Koivistoinen, M. Arvas, J.R. Headman, M. Andberg, M. Penttilä, T.W. Jeffries, P. Richard, Characterisation of the gene cluster for L-rhamnose catabolism in the yeast Scheffersomyces (Pichia) stipitis. Gene 492, 177–185 (2012)

    Article  CAS  Google Scholar 

  6. R. Monosik, P. Magdolen, M. Stredansky, E. Sturdik, Monitoring of monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry. Food Chem. 138, 220–226 (2013)

    Article  CAS  Google Scholar 

  7. P. Shanmugavelan, S.Y. Kim, J.B. Kim, H.W. Kim, S.M. Cho, S.N. Kim et al., Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD. Carbohydr. Res. 380, 112–117 (2013)

    Article  CAS  Google Scholar 

  8. K. Horváth, I. Molnár-Perl, Simultaneous GC-MS quantitation of o-phosphoric, aliphatic and aromatic carboxylic acids, proline, hydroxymethylfurfurol and sugars as their TMS derivatives: In honeys. Chromatographia 48, 120–126 (1998)

    Article  Google Scholar 

  9. C. Abazia, R. Ferrara, M. Michela Corsaro, G. Barone, P. Coccoli, G. Parrilli, Simultaneous gas-chromatographic measurement of rhamnose, lactulose and sucrose and their application in the testing gastrointestinal permeability. Clin. Chim. Acta 338, 25–32 (2003)

    Article  CAS  Google Scholar 

  10. Y. Huang, J. Carragher, D. Cozzolino, Measurement of fructose, glucose, maltose and sucrose in barley malt using attenuated total reflectance mid-infrared spectroscopy. Food Anal. Methods 9, 1079–1085 (2016)

    Article  Google Scholar 

  11. GaryD Marshall,, Christian and Anand Kumar. Enzymatic determination of maltose by amperometric measurement of the rate of oxygen depletion. Analyst 102, 424–428 (1977)

    Article  CAS  Google Scholar 

  12. X.H. Niu, C. Chen, H.L. Zhao, J. Tang, Y.X. Li, M.B. Lan, Porous screen-printed carbon electrode. Electrochem. Commun. 22, 170–173 (2012)

    Article  CAS  Google Scholar 

  13. H.C. Shin, M.L. Liu, Copper foam structures with highly porous nanostructured walls. Chem. Mater. 16, 5460–5464 (2004)

    Article  CAS  Google Scholar 

  14. X.H. Niu, Y.X. Li, J. Tang, Y.L. Hu, H.L. Zhao, M.B. Lan, Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: A Cu foam case. Biosens. Bioelectron. 51, 22–28 (2014)

    Article  CAS  Google Scholar 

  15. J.J. Jin, Y.Y. Ge, G.Y. Zheng, Y.P. Cai, W. Liu, G.H. Hui, d-Glucose, d-Galactose, and d-Lactose non-enzyme quantitative and qualitative analysis method based on Cu foam electrode. Food Chem. 175, 485–493 (2015)

    Article  CAS  Google Scholar 

  16. Q.H. Tian, X.Y. Guo, Electroless copper plating on microcellular polyurethane foam. Trans. Nonferrous Metals Soc. China 20, s283–s287 (2010)

    Article  CAS  Google Scholar 

  17. R. Benzi, A. Sutera, A. Vulpiana, The mechanism of stochastic resonance. J. Phys. A 14, L453–L456 (1981)

    Article  Google Scholar 

  18. R. Dutta, A. Das, N.G. Stocks, D. Morgan, Stochastic resonance-based electronic nose: a novel way to classify bacteria. Sens. Actuators B 115, 17–27 (2006)

    Article  CAS  Google Scholar 

  19. G.H. Hui, P. Ji, S.S. Mi, S.P. Deng, Electrochemical impedance spectrum frequency optimization of bitter taste cell-based sensors. Biosens. Bioelectron. 47, 164–170 (2013)

    Article  CAS  Google Scholar 

  20. G.H. Hui, S.S. Mi, S.P. Deng, Sweet and bitter tastants specific detection by the taste cell-based sensor. Biosens. Bioelectron. 35, 429–438 (2012)

    Article  CAS  Google Scholar 

  21. G.H. Hui, S.S. Mi, Q.Q. Chen, X. Chen, Sweet and bitter tastant discrimination from complex chemical mixtures using taste cell-based sensor. Sens. Actuators B 192, 361–368 (2014)

    Article  CAS  Google Scholar 

  22. Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 9, 981–988 (2007)

    Article  CAS  Google Scholar 

  23. H.C. Shin, J. Dong, M.L. Liu, Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 15, 1610–1614 (2003)

    Article  CAS  Google Scholar 

  24. S.K. Meher, G.R. Rao, Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nanoscale 5, 2089–2099 (2013)

    Article  CAS  Google Scholar 

  25. L.Q. Luo, L.M. Zhu, Z.X. Wang, Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode. Bioelectrochemistry 88, 156–163 (2012)

    Article  CAS  Google Scholar 

  26. F.H. Meng, W. Shi, Y.N. Sun, X. Zhu, G.S. Wu, C.Q. Ruan, X. Liu, D.T. Ge, Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detectionrange. Biosens. Bioelectron. 42, 141–147 (2013)

    Article  CAS  Google Scholar 

  27. K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5, 1246–1301 (2010)

    CAS  Google Scholar 

  28. E.O. Odebunmi, S.A. Iwarere, S.O. Owalude, Kinetics of oxidation of fructose, sucrose and maltose by potassium permanganate in NaHCO3/NaOH buffer and Iridium (IV) complex in sodium acetate/acetic acid buffer. Int. J. Chem. 16, 167–176 (2006)

    CAS  Google Scholar 

  29. S.B. Aoun, G.S. Bang, T. Koga, Y. Nonaka, T. Sotomura, I. Taniguchi, Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions. Electrochem. Commun. 5, 317–320 (2003)

    Article  CAS  Google Scholar 

  30. S.V. Singh, O.C. Saxena, M.P. Singh, Mechanism of copper (II) oxidation of reducing sugars. I. Kinetics and mechanism of oxidation of D-xylose, L-arabinose, D-glucose, D-fructose, D-mannose, D-galactose, L-sorbose, lactose, maltose, cellobiose, and melibiose by copper (II) in alkaline medium. J. Am. Chem. Soc. 92, 537–541 (1970)

    Article  CAS  Google Scholar 

  31. N. Torto, T. Ruzgas, L. Gorton, Electrochemical oxidation of mono-and disaccharides at fresh as well as oxidized copper electrodes in alkaline media. J. Electroanal. Chem. 464, 252–258 (1999)

    Article  CAS  Google Scholar 

  32. V.Y. Zakharans, A.T. Valdnietse, Amplification method for the titrimetric determination of L-rhamnose by periodate oxidation. Chem. Nat. Compd. 20, 18–21 (1984)

    Article  Google Scholar 

  33. M. Rizzotto, M.I. Frascaroli, S. Signorella, L.F. Sala, Oxidation of L-rhamnose and D-mannose by chromium (VI) in aqueous acetic acid. Polyhedron 15, 1517–1523 (1996)

    Article  CAS  Google Scholar 

  34. L.F. Sala, S.R. Signorella, M. Rizzotto, M.I. Frascaroli, F. Gandolfo, Oxidation of L-rhamnose and D-mannose by Cr (VI) in perchloric acid. A comparative study. Can. J. Chem. 70, 2046–2052 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Lou Xiongwei has received research grant from Scientific Research Project of Zhejiang Province (No.2016C31G2100263) and Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang Province (No. 100151401). Li Jian has received research grant from Scientific Research Development Project of Zhejiang A & F University (2015FR020). Hui Guohua has received research grant from Scientific Research Project of Zhejiang Province (No.2016C31G2100263) and Scientific Research Development Project of Zhejiang A & F University (Talent Startup Project 2015FR020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Zhidong or Hui Guohua.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaohong, Z., Zhidong, Z., Xiongwei, L. et al. A maltose, L-rhamnose sensor based on porous Cu foam and electrochemical amperometric i-t scanning method. Food Measure 11, 548–555 (2017). https://doi.org/10.1007/s11694-016-9422-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9422-0

Keywords

Navigation