Skip to main content

Advertisement

Log in

Modeling engineering characteristics of hazelnut kernel during infrared fluidized bed drying

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, a laboratory scale infrared fluidized bed dryer was used to dry the hazelnut kernels. The drying experiments were performed under the following drying conditions: air temperatures of 45, 65 and 85 °C, air velocities of 1.30, 3.09 and 4.87 m/s and infrared powers of 500, 1000 and 1500 W. Maximum and minimum values of effective moisture diffusivity for hazelnut kernels were obtained 1.87 × 10−9 and 1.75 × 10−10 m2/s, respectively. Activation energy was obtained between 33.02 and 50.22 kJ/mol. Specific energy consumption of hazelnut kernels was obtained between 1.72 × 103 and 2.23 × 104 MJ/kg. Six mathematical models were used to predict the drying behavior of hazelnut samples. Among these models, the Midilli model sufficiently fitted the experimental drying data. The shrinkage values were obtained within the range of 0.10 and 0.24. The results obtained showed that the \({{L}^{*}},\) \({{a}^{*}},\) \({{b}^{*}}\) and \(\Delta E\) color values of the kernels were significantly affected (P < 0.05) by air temperature. The highest color changes were related to the air temperature of 85 °C at all air velocities and infrared powers. Maximum values of energy (103.57 N mm) and force (129.84 N) at initial rupture point was related to air temperatures of 85 °C and infrared powers of 1500 W. Minimum values of energy (16.47 N mm) and force (31.74 N) at initial rupture point was related to air temperatures of 45 °C and infrared powers of 500 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.A.O. Statistics. http://www.FAO.org. (2007)

  2. C. Crews, P. Hough, J. Godward, P. Brereton, M. Lees, S. Guiet, W. Winkelmann, J. Agric. Food Chem. 53, 4843–4852 (2005)

    Article  CAS  Google Scholar 

  3. A. Topuz, M. Gur, M.Z. Gul, Appl. Therm. Eng. 24, 1535–1547 (2004)

    Article  Google Scholar 

  4. M. Ozdemir, O. Devres, J. Food Eng. 44, 31–38 (2000)

    Article  Google Scholar 

  5. A. Ghaderi, S. Abbasi, A. Motavali, S. Minaei, Chem. Ind. Chem. Eng. Q. 18(2), 283–293 (2012)

    Article  Google Scholar 

  6. B. Koc, I. Eren, F.K. Ertekin, J. Food Eng. 85, 340–349 (2008)

    Article  Google Scholar 

  7. M.S. Rahman, Int. J. Food Prop. 6(1), 61–72 (2003)

    Article  Google Scholar 

  8. P.P. Lewicki, Trends. Food Sci. Tech. 17, 153–163 (2006)

    Article  CAS  Google Scholar 

  9. C. Zheng, D.W. Sun, L. Zheng, J. Food Eng. 77, 858–863 (2006)

    Article  Google Scholar 

  10. R. Amiri Chayjan, M. Kaveh, J. Food Process. Preserv. 38, 1307–1320 (2014)

    Article  Google Scholar 

  11. D. Jain, P.B. Pathare, Biosyst. Eng. 89(3), 289–296 (2004)

    Article  Google Scholar 

  12. M. Kaveh, R. Amiri Chayjan, Cercet. Agron. Moldova. 4(160), 5–21 (2014)

    Google Scholar 

  13. H. Togrul, J. Food Eng. 77, 610–619 (2006)

    Article  Google Scholar 

  14. N. Boudhrioua, N. Bahloul, B.I. Slimen, N. Kechaou, Ind. Crops Prod. 29, 412–419 (2009)

    Article  CAS  Google Scholar 

  15. P. Wanyo, S. Siriamornpun, N. Meeso, Food Bioprod. Process. 89, 22–30 (2011)

    Article  CAS  Google Scholar 

  16. G.P. Sharma, R.C. Verma, P. Pathare, J. Food Eng. 71, 282–286 (2005)

    Article  Google Scholar 

  17. A.R. Celma, F.L. Rodriguez, F.C. Blazquez, Food Bioprod. Process. 87 (4), 247–253 (2009)

    Article  Google Scholar 

  18. S. Erenturk, M. Sahin Gulaboglu, S. Gultekin, Food Bioprod. Process. 88, 99–104 (2010)

    Article  Google Scholar 

  19. N.P. Zogzas, Z.B. Maroulis, D. Marinos-Kouris, Dry Technol. 14, 2225–2253 (1996)

    Article  CAS  Google Scholar 

  20. M. Sakin, F. Kaymak-Ertekin, C. Ilicali, J. Food Eng. 80(3), 822–831 (2007)

    Article  Google Scholar 

  21. J.S. Roberts, D.R. Kidd, O. Padilla-Zakour. J. Food Eng. 89(4), 460–465 (2008)

    Article  Google Scholar 

  22. I. Ceylan, M. Aktas, Appl. Energ. 85, 841–854 (2008)

    Google Scholar 

  23. A. Motevali, S. Minaei, M.H. Khoshtaghaza, M. Kazemi, A.M. Nikbakht, Int. J. Food Eng. 6(3), 1–19 (2010)

    Article  Google Scholar 

  24. M. Kaveh, R. Amiri Chayjan, ACTA Sci. Pol. Technol. 13(1), 65–78 (2014)

    Article  Google Scholar 

  25. N. Izli, E. Isik, Int. J. Food Prop 18, 241–249 (2015)

    Article  CAS  Google Scholar 

  26. K.O. Falade, O.J. Solademi, Int. J. Food Sci. Tech. 45, 278–288 (2010)

    Article  CAS  Google Scholar 

  27. R. Khir, Z. Pan, A. Salim, B.R. Hartsough, S. Mohamed, LWT-Food Sci. Technol. 44, 1126–1132 (2011)

    Article  CAS  Google Scholar 

  28. I. Doymaz, O. Ismail, Food Bioprod. Process. 89, 31–38 (2011)

    Article  Google Scholar 

  29. I. Doymaz, Int, J. Food Eng. 13, 486–497 (2010)

    Google Scholar 

  30. S. Odjo, P. Malumba, J. Dossou, S. Janas, F. Bera, J. Food Eng. 109, 561–570 (2012)

    Article  CAS  Google Scholar 

  31. R. Amiri Chayjan, M. Kaveh, S. Khayati, J. Food Process. Preserv. 39, 239–253 (2015)

    Article  Google Scholar 

  32. T. Koyunco, Y. Pinar, F. Lule, J. Food Eng. 78(4), 1471–1475 (2007)

    Article  Google Scholar 

  33. I. Das, S.K. Das, S. Bal, J. Food Eng. 62, 9–14 (2004)

    Article  Google Scholar 

  34. M. Aghbashlo, M. Kianmehr, H. Samimi-Akhijahani, Energy Convers. Manage. 49, 2865–2871 (2008)

    Article  CAS  Google Scholar 

  35. I. Doymaz, N. Tugrul, M. Pala, J. Food Eng. 77, 559–565 (2006)

    Article  Google Scholar 

  36. S.A. Nagalakshmi, P. Mitra, V. Meda, Int. J. Food Prop. 17, 2142–2156 (2014)

    Article  CAS  Google Scholar 

  37. M.F. Arikan, Z. Ayhan, Y. Soysal, O. Esturk, Food Bioproc. Tech. 5, 3217–3229 (2012)

    Article  Google Scholar 

  38. A.O. Dissa, H. Desmorieux, J. Bathiebo, J. Koulidiati, J. Food Eng 88, 429–437 (2008)

    Article  Google Scholar 

  39. M.A. Hossain, K. Gottschalk, Int. J. Food Prop. 12, 871–884 (2009)

    Article  CAS  Google Scholar 

  40. P. Sirisomboon, P. Kitchaiya, T. Pholpho, W. Mahuttanyavanitch, Biosyst. Eng. 97, 201–207 (2007)

    Article  Google Scholar 

  41. C. Nimmol, S. Devahastin, T. Swasdisevi, S. Soponronnarit, J. Food Eng. 81, 624–633 (2007)

    Article  Google Scholar 

  42. S. Janjai, M. Precoppe, N. Lamlert, B. Mahayothee, B.K. Bala, M. Nagle, J. Muller, Food Bioprod. Process. 89, 194–201 (2011)

    Article  Google Scholar 

  43. J. Shi, Z. Pan, T.H. Mchugh, D. Wood, E. Hirschberg, D. Olson, LWT-Food Sci. Technol. 41, 1962–1972 (2008)

    Article  CAS  Google Scholar 

  44. P.B. Pathare, G.P. Sharma, Biosyst. Eng. 93(3), 285–291 (2006)

    Article  Google Scholar 

  45. M. Miranda, H. Maureira, K. Rodriguez, A. Vega-Galvez, J. Food Eng. 91, 297–304 (2009)

    Article  CAS  Google Scholar 

  46. G. Hashemi, D. Mowla, M. Kazemini, J. Food Eng. 92, 331–338 (2009)

    Article  Google Scholar 

  47. L. Mayor, A.M. Sereno, J. Food Eng. 61, 373–386 (2004)

    Article  Google Scholar 

  48. A. Kalrta, K. Gornicki, Energy Convers. Manage. 51, 2967–2978 (2010)

    Article  Google Scholar 

  49. M.A. Al-Mahasneh, T.M. Rababah, M.M. Bani-Amer, N.M. Al-Omari, M.K. Mahasneh, Int. J. Food Prop. 16, 70–80 (2013)

    Article  Google Scholar 

  50. M. Kashaninejad, A. Mortazavi, A. Safekordi, L.G. Tabil, J. Food Eng. 78, 98–108 (2007)

    Article  Google Scholar 

  51. B. Acar, H. Sadikoglu, I. Doymaz, J. Food Process. Preserv. 39(2), 142–149 (2015)

    Article  Google Scholar 

  52. V. Demir, T. Gunhan, A.K. Yagcioglu, Biosyst. Eng. 98, 47–53 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by Bu Ali Sina University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Amiri Chayjan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavidelan, M.A., Chayjan, R.A. Modeling engineering characteristics of hazelnut kernel during infrared fluidized bed drying. Food Measure 11, 460–478 (2017). https://doi.org/10.1007/s11694-016-9414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9414-0

Keywords

Navigation