Skip to main content
Log in

Chemical and nutritional properties of different fractions of Prosopis alba pods and seeds

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The objective of this work was to study chemical and nutritional aspects of different fractions of Prosopis alba. Flours from whole pod, pericarp (pulp) and seeds were obtained. Polyphenols were mainly located in pulp but antioxidant activity was higher in whole pod flour and seeds. In seeds, the fraction with the highest polyphenols and antioxidant activity was the seed coat or testa. Protein content was higher in whole pod flour (5.81 %) than in pulp flour (3.52 %), presenting the seed an appreciable amount 33.6 %. These proteins were composed by monomer subunits of 85, 67, 38, 16 and 14 kDa and no prolamins and anti-tryptic activity were detected. P. alba flours presented high content of soluble sugars, mainly composed by sucrose, and also high amount of insoluble dietary fiber. The major mineral was potassium. The whole pod, due to the contribution of seeds, contained high amount of calcium, magnesium, iron and zinc, all indispensable minerals for human nutrition. Therefore, P. alba flours, mainly containing the seeds, constitute nutritional ingredients for bakery and gluten free products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burkart A, (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). Part 1–2. J Arnold Arbor 57(3):219–249//450–425

  2. E.M. Carrión, Uso de algarroba como sucedáneo del café, in Facultad de Ingeniería (Universidad De Piura, Lima, 1988), p. 56

    Google Scholar 

  3. Grados N, Cruz G (1996) New Approaches to Industrialization of Algarrobo (Prosopis pallida) Pods in Peru. In: P. Felker and J. Moss (eds) Prosopis: semiarid fuelwood and forage tree building consensus for the disenfranchised, Center for Semi-Arid Forest Resources, Texas

  4. P. Felker et al., Economic assessment of production of flour from Prosopis alba and P. pallida pods for human food applications. J Arid Environ 53(4), 517–528 (2003)

    Article  Google Scholar 

  5. D. Meyer et al., Processing, composition, nutritional evaluation, and utilization of mesquite (Prosopis spp.) pods as a raw material for the food industry. J Agric Food Chem 34(5), 914–919 (1986)

    Article  CAS  Google Scholar 

  6. L. Bravo, N. Grados, F. Saura-Calixto, Composition and potential uses of mesquite pods (Prosopis pallida L): Comparison with carob pods (Ceratonia siliqua L). J Sci Food Agric 65(3), 303–306 (1994)

    Article  CAS  Google Scholar 

  7. M. García-Andrade et al., Mesquite leaves (Prosopis laevigata), a natural resource with antioxidant capacity and cardioprotection potential. Ind Crops Prod 44, 336–342 (2013)

    Article  CAS  Google Scholar 

  8. M.J. Pérez et al., Polyphenolic compounds and anthocyanin content of Prosopis nigra and Prosopis alba pods flour and their antioxidant and anti-inflammatory capacities. Food Res Int 64, 762–771 (2014)

    Article  CAS  Google Scholar 

  9. A. Crozier, I.B. Jaganath, M.N. Clifford, Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26(8), 1001–1043 (2009)

    Article  CAS  Google Scholar 

  10. P. Kubatka, et al., Fruit peel polyphenols demonstrate substantial anti-tumour effects in the model of breast cancer. Eur J Nutr (2015). doi:10.1007/s00394-015-0910-5

  11. F. Cattaneo et al., Anti-inflammatory and antioxidant activities, functional properties and mutagenicity studies of protein and protein hydrolysate obtained from Prosopis alba seed flour. Food Chem 161, 391–399 (2014)

    Article  CAS  Google Scholar 

  12. M.L. Cardozo et al., Evaluation of antioxidant capacity, genotoxicity and polyphenol content of non conventional foods: Prosopis flour. Food Res Int 43(5), 1505–1510 (2010)

    Article  CAS  Google Scholar 

  13. ASTM (2013) Standard specification for woven wire test sieve cloth and test sieves, ASTM International, West Conshohocken

  14. AOAC (1998) Official methods of analysis of AOAC International, AOAC International, Gaithersburg

  15. F.G. Chirdo, M.C. Añón, C.A. Fossati, Optimization of a competitive ELISA with polyclonal antibodies for quantification of prolamins in foods. Food Agric Immunol 7(4), 333–343 (1995)

    Article  CAS  Google Scholar 

  16. Eliasson A-C (2006) Carbohydrates in food. 2nd ed. Food Science and Technology, CRC/Taylor & Francis, Boca Raton, p 546

  17. M. Papagiannopoulos et al., Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J Agric Food Chem 52(12), 3784–3791 (2004)

    Article  CAS  Google Scholar 

  18. M.J. Zaro et al., Distribution, stability and fate of phenolic compounds in white and purple eggplants (Solanum melongena L.). Postharvest Biol Technol 92, 70–78 (2014)

    Article  CAS  Google Scholar 

  19. R. Re et al., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10), 1231–1237 (1999)

    Article  CAS  Google Scholar 

  20. P.A. Sobral, J.R. Wagner, Relación entre la Composición y la Actividad Antitríptica de Sueros de Soja y Tofu y Comportamiento Térmico de sus Proteínas Aisladas. Información Tecnológica 20(5), 65–73 (2009)

    Article  CAS  Google Scholar 

  21. R. Zolfaghari, H. Harden, L. Huffman, Some physical and chemical properties of honey mesquite pod (Prosopis glandulosa) and applications in food products. Cereal Chem 63(2), 104–108 (1986)

    CAS  Google Scholar 

  22. R. Becker, O.-K.K. Grosjean, A compositional study of pods of two varieties of mesquite (Prosopis glandulosa, P. velutina). J Agric Food Chem 28(1), 22–25 (1980)

    Article  CAS  Google Scholar 

  23. N. Gharnit et al., Pomological characterization of carob tree (Ceratonia siliqua L.) from the province of Chefchaouen (NW of Morocco). Moroccan J Bio 2(3), 1–11 (2006)

    Google Scholar 

  24. A.L. Lamarque et al., Proximate composition and seed lipid components of some Prosopis (leguminosae) from argentina. J Sci Food Agric 66(3), 323–326 (1994)

    Article  CAS  Google Scholar 

  25. B. Escobar et al., Uso de harina de cotiledón de algarrobo (Prosopis chilensis (Mol) Stuntz) como fuente de proteína y fibra dietética en la elaboración de galletas y hojuelas fritas. Archivos Latinoamericanos de Nutrición 59, 191–198 (2009)

    CAS  Google Scholar 

  26. P. Felker, R.S. Bandurski, Protein and amino acid composition of tree legume seeds. J Sci Food Agric 28(9), 791–797 (1977)

    Article  CAS  Google Scholar 

  27. A. González Galán et al., Caracterización química de la harina del fruto de Prosopis spp. procedente de Bolivia y Brasil. Archivos Latinoamericanos de Nutrición 58, 309–315 (2008)

    Google Scholar 

  28. C. Bengoechea et al., Composition and structure of carob (Ceratonia siliqua L.) germ proteins. Food Chem 107(2), 675–683 (2008)

    Article  CAS  Google Scholar 

  29. M.C. Puppo, C.E. Lupano, M.C. Añon, Gelation of soybean protein isolates in acidic conditions. Effect of pH and protein concentration. J Agric Food Chem 43(9), 2356–2361 (1995)

    Article  CAS  Google Scholar 

  30. C.G.M. Da Silva et al., Caracterização físico-química e microbiológica da farinha de algaroba (Prosopis juliflora (Sw.) DC). Food Sci Technol (Campinas) 27, 733–736 (2007)

    Google Scholar 

  31. S. Choge et al., Prosopis pods as human food, with special reference to Kenya. Water SA 33(3), 419–424 (2007)

    CAS  Google Scholar 

  32. H.J.F. Zunft et al., Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur J Nutr 42(5), 235–242 (2003)

    Article  CAS  Google Scholar 

  33. S. Gruendel et al., Carob pulp preparation rich in insoluble dietary fiber and polyphenols enhances lipid oxidation and lowers postprandial acylated ghrelin in humans. J Nutr 136(6), 1533–1538 (2006)

    CAS  Google Scholar 

  34. USDA. Agricultural Research Service. 2013. USDA National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory Home Page. 2013 [cited 2013; Available from: http://www.ars.usda.gov/nutrientdata

  35. Durán P et al. (2007) Encuesta Nacional de Nutrición y Salud Documento de Resultados, M.d. Salud, (ed), Buenos Aires, Argentina

  36. M.R. Martinez Meyer et al., Content of zinc, iron and their absorption inhibitors in Nicaraguan common beans (Phaseolus vulgaris L.). Food Chem 136(1), 87–93 (2013)

    Article  CAS  Google Scholar 

  37. J.T. Barminas, H.M. Maina, J. Ali, Nutrient content of Prosopis africana seeds. Plant Foods Hum Nutr 52(4), 325–328 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We want to acknowledge UNLP and CONICET of Argentina for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cecilia Puppo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciammaro, L., Ferrero, C. & Puppo, M.C. Chemical and nutritional properties of different fractions of Prosopis alba pods and seeds. Food Measure 10, 103–112 (2016). https://doi.org/10.1007/s11694-015-9282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-015-9282-z

Keywords

Navigation