Skip to main content
Log in

Solid-state determination of hop bitter acids in beer by UV–MALDI–Orbitrap mass spectrometry

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Despite of the fact that the manufacturing of beer dated from many centuries, and nevertheless, of enormous analytical instrumental elaborations, developments and implementations for highly precise and accurate protocols for determination of foodstuffs, the quantitation of beer ingredients still represent significant challenge. It is caused by: (A) high complexity of the beer as foodstuffs matrix with significant proteins and maltooligosaccharide content as well as diversity of more than 57 low-molecular weight hop bitter acidic analytes and their oxidation products; (B) higher instability and variety of chemical oxidation processes typical for these ingredients; (C) easy isometrization and rearrangements, tautomerism and large number of different conformations of hop bitter acids; (D) structural similarity of the analytes; (E) photo-instability of the ingredients; and (F) still unavailable commercial standards for all hop acids, which difficult the analysis of major and minor components in crude hop extracts, during brewing process and storage of final food product. The diverse number of chemical and photochemical processes may be conducted at each these stages of beer manufacturing, which caused need of methodological elaborations and implementations of accurate analytical protocols for on-line analysis of beer components. For this reason the paper content encompasses quantitative solid-state analysis of hop bitter acids in different brands beer beverages employing UV–MALDI–Orbitrap MS method. Despite of its powerful instrumental capability, this mass spectrometric method has been scarce utilized in analysing of beer foodstuffs, limiting the scientific efforts and reports to mainly qualitative analysis and fingerprinting of proteins and maltooligosaccharides. In this respect the study provided novelty in the field of the quantitative analytical chemistry of low molecular weight analytes in beer demonstrating its capability for accurate determination of closely structural ingredients such as the large number of naturally occurring hop bitter acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CHCA:

α-Cyano-4-hydroxycinnamic acid

ANOVA:

Analysis of variance

APCI:

Atmospheric pressure chemical ionization (mass spectrometric method)

ATT:

6-Aza-2-thiothymine

DHA:

2,4-Dihydroxy benzoic acid

DHB:

2,5-Dihydroxy benzoic acid

ECD:

Electron capture detection

ESI:

Electrospray ionization (mass spectrometric method)

Fs:

Fluorescence (detection)

GC:

Gas-chromatography

HPLC:

High performance liquid chromatography

LODs:

Concentration limit of detection (analyte)

LOQs:

Concentration limit of quantitation (analyte)

LC:

Liquid chromatography

LMW:

Low molecular weight (analytes)

MLODs:

Concentration method detection limit (instrumental)

MLOQs:

Concentration method quantitation limit (instrumental)

MALDI:

Matrix/assisted laser desorption ionization (mass spectrometric method)

MS:

Mass spectrometry

MS/MS:

Mass spectrometry in a tandem mode of operation

MVA:

Multi-variative analysis

NMR:

Nuclear magnetic resonance

PO:

Polynomial order

RA:

Relative abundance

RTs:

Retention times

TOF:

Time-of-flight (mass spectrometric method)

THAP:

2,4,6-Trihydroxyacetophenone

UV:

Ultraviolet (irradiation or detection)

UHPLC:

Ultra-high pressure liquid chromatography

References

  1. M. Awouafack, L. McGaw, S. Gottfried, R. Mbouangouere, P. Tane, M. Spiteller, J. Eloff, Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae). BMC Complement Alter Med 13, 289 (2013)

    Article  Google Scholar 

  2. M. Bahadir, H. Parlar, M. Spiteller, Springer umweltlexikon, 2nd edn. (Springer, Berlin, 2000), pp. 1–1457

    Book  Google Scholar 

  3. R. Blessing, An empirical correction for absorption anisotropy. Acta Crystallogr A51, 33–38 (1995)

    Article  CAS  Google Scholar 

  4. T. Berner, S. Jacobsen, N. Arneborg, The impact of different ale brewer’s yeast strains on the proteome of immature beer. BMC Microbiol 13, 215 (2013)

    Article  Google Scholar 

  5. A. Boutigny, I. Beukes, I. Small, S. Zuehlke, M. Spiteller, B. Van Rensburg, B. Flett, A. Viljoen, Quantitative detection of Fusarium pathogens and their mycotoxins in South African maize. Plant Pathol 61, 522–531 (2012)

    Article  CAS  Google Scholar 

  6. K. Banerjee, A. Ligon, M. Spiteller, Environmental fate of trifloxystrobin in soils of different geographical origins and photolytic degradation in water. J Agric Food Chem 54, 9479–9487 (2006)

    Article  CAS  Google Scholar 

  7. W. Chen, J. Lin, mechanisms of cancer chemoprevention by hop bitter acids (beer aroma) through induction of apoptosis mediated by fas and saspase cascades. J Agric Food Chem 52, 55–64 (2004)

    Article  CAS  Google Scholar 

  8. B. Clowers, E. Dodds, R. Seipert, C. Lebrilla, Dual polarity accurate mass calibration for electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry using maltooligosaccharides. Anal Biochem 381, 205–213 (2008)

    Article  CAS  Google Scholar 

  9. D. Crawford, Ab initio calculation of molecular chiroptical properties. Theor Chem Acc 115, 227–245 (2006)

    Article  CAS  Google Scholar 

  10. E. Cant, M. Vanderwalle, M. Verzele, Studies in organic stereometry—XI: the fragmentation of hop bitter acids derivatives having a five membered ring structure. Org Mass Spectrom 6, 977–989 (1972)

    Article  CAS  Google Scholar 

  11. Dalton Program Package (2011). http://www.daltonprogram.org/download.html. Accessed 31 May 2011

  12. F. De Proft, P. Geerlings, Conceptual and computational DFT in the study of aromaticity. Chem Rev 101, 1451–1464 (2001)

    Article  Google Scholar 

  13. N. De Almeida, E. Do Nascimento, D. Cardoso, On the reaction of lupulones, hops β-acids, with 1-hydroxyethyl radical. J Agric Food Chem 60, 10649–10656 (2012)

    Article  Google Scholar 

  14. M. Frisch, Gaussian 09 (Gaussian Inc., Pittsburgh, 2009)

    Google Scholar 

  15. J. Goncalves, V. Alves, F. Rodrigues, J. Figueira, J. Camar, A semi-automatic microextraction in packed sorbent, using a digitallycontrolled syringe, combined with ultra-high pressure liquidchromatography as a new and ultra-fast approach for thedetermination of prenylflavonoids in beers. J Chromatogr A 1304, 42–51 (2013)

    Article  CAS  Google Scholar 

  16. S. Grimme, A. Bahlmann, G. Haufe, Ab initio calculations for the optical rotations of conformationally flexible molecules: A case study on six, seven-, and eight-membered fluorinated cycloalkanol esters. Chirality 14, 793–797 (2002)

    Article  CAS  Google Scholar 

  17. S. Grimme, F. Neese, Double-hybrid density functional theory for excited electronic states of molecules. J Chem Phys 127, 154116 (2007)

    Article  Google Scholar 

  18. G. Haseleu, A. Lagemann, A. Stephan, A. Intelmann, A. Dunkel, T. Hofmann, Quantitative sensomics profiling of hop-derived bitter compounds throughout a full-scale beer manufacturing process. J Agric Food Chem 58, 7930–7939 (2010)

    Article  CAS  Google Scholar 

  19. J. Hilmes, M. Pavlovic, K. Gruenwald, M. Maggipinto, A. Schumacher, E. Becker, E. Kirchhoff, U. Busch, I. Huber, MALDI-TOF-MS in routine analysis: a new method for the characterization of isolates from food microbiology; (MALDI-TOF-MS in der routineanalytik: Eine neue methode zur charakterisierung von isolaten aus der lebensmittelmikrobiologie). Dtsch Lebensm Rundsch 108, 112–121 (2012)

    CAS  Google Scholar 

  20. A. Hermans-Lokkerbol, R. Verpoorte, Development and validation of a high-performance liquid chromatography system for the analysis of hop bitter acids. J Chromatogr A 669, 65–73 (1994)

    Article  CAS  Google Scholar 

  21. O. Haefliger, N. Jeckelmann, Stripping of aroma compounds during beer fermentation monitored in real-time using an automatic cryotrapping sampling system and fast gas chromatography/mass spectrometry. Anal Methods 5, 4409–4418 (2013)

    Article  CAS  Google Scholar 

  22. B. Ivanova, M. Spiteller, Substituted benzo[i]phenanthridines as promising topoisomerase-I non-camptothecin targeting agents: An experimental and theoretical study. Med Chem Res 22, 5204–5217 (2013)

    Article  CAS  Google Scholar 

  23. B. Ivanova, M. Spiteller, On the application of the organic barbiturates as NLO materials. Cryst Growth Des 10, 2470–2474 (2010)

    Article  CAS  Google Scholar 

  24. B. Ivanova, M. Spiteller, Conformations and properties of the l-tryptophyl-containing peptides in solution, depending on the pH—theoretical study vs. experiments. Biopolymers 93, 727–734 (2010)

    CAS  Google Scholar 

  25. B. Ivanova, M. Spiteller, Quantitative solid-state Raman spectroscopic method for control of fungicides. Analyst 137, 3355–3364 (2012)

    Article  CAS  Google Scholar 

  26. T. Kuda, Y. Izawa, S. Yoshida, T. Koyanagi, H. Takahashi, B. Kimura, Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control 35, 419–425 (2014)

    Article  CAS  Google Scholar 

  27. M. Kongue, F. Talontsi, M. Lamshoeft, T. Kenla, B. Dittrich, G. Kapche, M. Spiteller, Sonhafouonic acid, a new cytotoxic and antifungal hopene-triterpenoid from Zehneria scabra camerunensis. Fitoterapia 85, 176–180 (2013)

    Article  CAS  Google Scholar 

  28. T. Kolev, B. Koleva, R. Seidel, M. Spiteller, W. Sheldrick, New aspects on the origin of color in the solid state. Coherently shifting of the protons in violurate crystals. Cryst Growth Des 9, 3348–3352 (2009)

    Article  CAS  Google Scholar 

  29. P. Kumara, S. Zuehlke, V. Priti, B. Ramesha, S. Shweta, G. Ravikanth, R. Vasudeva, T. Santhoshkumar, M. Spiteller, R. Shaanker, Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 101, 323–329 (2012)

    Article  CAS  Google Scholar 

  30. S. Khatib-Shahidi, M. Andersson, J. Herman, T. Gillespie, R. Caprioli, Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78, 6448–6456 (2006)

    Article  CAS  Google Scholar 

  31. C. Kelley, Iterative methods for optimization, vol. 18, Frontiers in Applied Mathematics (SIAM, Philadelphia, 1999)

    Book  Google Scholar 

  32. J. Lay, J. Gidden, R. Liyanage, B. Emerson, B. Durham, Rapid characterization of lipids by MALDI MS. Part 1: Bacterial taxonomy and analysis of food oils. Lipid Technol 24, 11–14 (2012)

    Article  CAS  Google Scholar 

  33. P. Li, Y. Zhu, S. He, J. Fan, Q. Hu, Y. Cao, Development and validation of a high-performance liquid chromatography method for the determination of diacetyl in beer using 4-nitro-o-phenylenediamine as the derivatization reagent. J Agric Food Chem 60, 3013–3019 (2012)

    Article  CAS  Google Scholar 

  34. S. Madrigal-Carballo, G. Rodriguez, J. Vega-Baudrit, C. Krueger, J. Reed, MALDI-TOF mass spectrometry of oligomeric food polyphenols (Review). Int Food Res J 20, 2023–2034 (2014)

    Google Scholar 

  35. P. Montenegro, I. Valente, L. Goncalves, J. Rodrigues, Barros, Single determination of a-ketoglutaric acid and pyruvic acid in beer by HPLC with UV detection. Anal Methods 3, 1207–1212 (2011)

    Article  CAS  Google Scholar 

  36. K. Madsen, H. Nielsen, O. Tingleff, Informatics and mathematical modelling, 2nd edn. (DTU, Lyngby, 2004)

    Google Scholar 

  37. B. Mennucci, J. Tomasi, R. Cammi, J. Cheeseman, M. Frisch, F. Devlin, S. Gabriel, P. Stephens, Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106, 6102–6113 (2002)

    Article  CAS  Google Scholar 

  38. OpenOffice program package. http://de.openoffice.org/. Accessed 31 May 2011

  39. E. Park, H. Yang, Y. Kim, J. Kim, Analysis of oligosaccharides in beer using MALDI-TOF-MS. Food Chem 134, 1658–1664 (2012)

    Article  CAS  Google Scholar 

  40. A. Piccolo, M. Spiteller, Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Anal Bioanal Chem 377, 1047–1059 (2003)

    Article  CAS  Google Scholar 

  41. J. Rodrigues, A. Barros, B. Carvalho, T. Brandao, A. Gil, A. Silva Ferreirad, Evaluation of beer deterioration by gas chromatography-mass spectrometry/multivariate analysis: a rapid tool for assessing beer composition. J Chromatogr A 1218, 990–996 (2011)

    Article  CAS  Google Scholar 

  42. B. Ramesha, S. Zuehlke, R. Vijaya, V. Priti, G. Ravikanth, K. Ganeshaiah, M. Spiteller, R. Shaanker, Sequestration of camptothecin, an anticancer alkaloid, by chrysomelid beetles. J Chem Ecol 37, 533–536 (2011)

    Article  CAS  Google Scholar 

  43. W. Riedl, H. Huebner, Ueber Hopfenbitterstoffe XII: Zur Kenntnis des 4-desoxy-humulons. Chemische Ber 90, 2870–2876 (1957)

    Article  CAS  Google Scholar 

  44. M. Schluesener, K. Bester, M. Spiteller, Determination of antibiotics such as macrolides, ionophores and tiamulin in liquid manure by HPLC-MS/MS. Anal Bioanal Chem 375, 942–947 (2003)

    CAS  Google Scholar 

  45. O. Sedo, I. Marova, Z. Zdrahal, Beer fingerprinting by matrix-assisted laser desorption-ionisation-time of flight mass spectrometry. Food Chem 135, 473–478 (2012)

    Article  CAS  Google Scholar 

  46. G.M. Sheldrick, A short history of SHELX. Acta Crystallogr A64, 112–122 (2008)

    Article  Google Scholar 

  47. G.M. Sheldrick, Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crysallogr D66, 479–485 (2010)

    Google Scholar 

  48. G.M. Sheldrick, Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr A46, 467–473 (1990)

    Article  CAS  Google Scholar 

  49. J. Storp, C. Stolle, B. Ivanova, M. Spiteller, Crystal structures and physical properties of 5-sulfosalicylate and violurate metal-organic crystals—experimental vs. theoretical study. J Coord Chem 65, 2055–2073 (2012)

    Article  CAS  Google Scholar 

  50. A. Spek, Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36, 7–13 (2003)

    Article  CAS  Google Scholar 

  51. P. Stephens, D. McCann, J. Cheeseman, M. Frisch, Determination of absolute configurations of chiral molecules using ab initio time-dependent density functional theory calculations of optical rotation: how reliable are absolute configurations obtained for molecules with small rotations? Chirality 17, S52–S64 (2005)

    Article  CAS  Google Scholar 

  52. S. Stephens, F. Devlin, J. Cheeseman, M. Frisch, O. Bortolini, P. Besse, Determination of absolute configuration using ab initio calculation of optical rotation. Chirality 15, S57–S64 (2003)

    Article  CAS  Google Scholar 

  53. F. Svara, A. Kiss, T. Jaskolla, M. Karas, R. Heeren, High-reactivity matrices increase the sensitivity of matrix enhanced secondary ion mass spectrometry. Anal Chem 83, 8308–8313 (2011)

    Article  CAS  Google Scholar 

  54. L. Sundara, E. Rowell, Detection of drugs in lifted cyanoacrylatedeveloped latent fingermarks using two laser desorption/ionisation mass spectrometric methods. Analyst 139, 633–642 (2014)

    Article  Google Scholar 

  55. E. Tyrrell, R. Archer, G. Skinner, K. Singh, K. Colston, C. Driver, Structure elucidation and an investigation into the in vitro effects of hop acids on human cancer cells. Phytochem Lett 3, 17–23 (2010)

    Article  CAS  Google Scholar 

  56. E. Tyrrell, R. Archer, M. Tucknott, K. Colston, G. Pirianov, D. Ramanthan, R. Dhillon, A. Sinclair, G. Skinner, The synthesis and anticancer effects of a range of natural and unnatural hop b-acids on breast cancer cells. Phytochem Lett 5, 144–149 (2012)

    Article  CAS  Google Scholar 

  57. U. Urban, J. Dahlberg, B. Carroll, W. Kaminsky, Absolute configuration of beer’s bitter compounds. Angew Chem Int Ed Engl 52, 1553–1555 (2013)

    Article  CAS  Google Scholar 

  58. M. Van Cleemput, K. Cattoor, K. De Bosscher, G. Haegeman, D. De Keukeleire, A. Heyerick, Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds (reviewes). J Nat Prod 72, 1220–1230 (2009)

    Article  Google Scholar 

  59. E. Vinogradov, K. Bock, Structural determination of some new oligosaccharides and analysis of the branching pattern of isomaltooligosaccharides from beer. Carbohydr Res 309, 57–64 (1998)

    Article  CAS  Google Scholar 

  60. I. Vranakis, D. Chochlakis, V. Sandalakis, Y. Tselentis, A. Psaroulaki, Cost- and time-effectiveness of application of MALDI-TOF mass spectrometry methodology in a food and water microbiology laboratory. Arch Hell Med 29, 477–479 (2012)

    Google Scholar 

  61. X. Wang, J. Han, A. Chou, J. Yang, J. Pan, C. Borchers, Hydroxyflavones as a new family of matrices for MALDI tissue imaging. Anal Chem 85, 7566–7573 (2013)

    Article  CAS  Google Scholar 

  62. X. Zhang, X. Liang, H. Xiao, Q. Xu, Direct characterization of bitter acids in a crude hop extract by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Am Soc Mass Spectrom 15, 180–187 (2004)

    Article  CAS  Google Scholar 

  63. Y. Zhao, D. Truhlar, Density functionals with broad applicability in chemistry. Accounts Chem Res 41, 157–167 (2008)

    Article  CAS  Google Scholar 

  64. Y. Zhao, D. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120, 215–241 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Deutscher Akademischer Austausch Dienst, Deutsche Forschungsgemeinschaft. Authors also thank the central instrumental laboratories for structural analysis at Dortmund University of Technology (Nordrhein-Westfalen, Germany) and the analytical and computational laboratories at the Institute of Environmental Research at the same University. Michael Spiteller has received grants (Deutsche Forschungsgemeinschaft 255/21-1 and 255/22-1; NRW–EU–Ziel2–Programms); Bojidarka Ivanova has received grant (Deutsche Forschungsgemeinschaft 255/22-1). This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojidarka Ivanova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11694_2014_9195_MOESM1_ESM.doc

Crystallographic data for structural analysis have been deposited to Cambridge Crystallographic Data Centre, CCDC 782344, 782345 and 782347. Copies of this information may be obtained from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44 1223 336 033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk); ORTEP diagrams (Fig. S1); UV–Vis–NIR and IR-data (Fig. S2; Tables S2, S3); Experimental crystallographic data refinements (Table S1); Chemical diagrams (Scheme S1); Thermodynamics (Table S4). Supplementary material 1 (DOC 1147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, B., Spiteller, M. Solid-state determination of hop bitter acids in beer by UV–MALDI–Orbitrap mass spectrometry. Food Measure 8, 343–355 (2014). https://doi.org/10.1007/s11694-014-9195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-014-9195-2

Keywords

Navigation