Skip to main content
Log in

Influence of health based ingredient and its hydrocolloid blends on noodle processing

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Blends were prepared with different levels of chickpea flour (CF) and durum semolina (0–60 %) and were utilized for understanding their influence on product quality. Proximate analysis and rheological characterization of blends were carried out. Noodles were developed and subjected to different physico-chemical, nutritional, cooking quality and sensory analysis, scanning electron microscopy (SEM). Optimized noodles on the basis of its sensory and cooking quality characteristics were improved with different hydrocolloids. Rheological studies revealed that with the increase in the CF content, Farinograph water absorption and dough stability decreased; simultaneously increase in dough development time. Maximum over pressure and curve configuration decreased with increase in CF. Based on the sensory and cooking loss of noodles 50 % formulation was improved with hydrocolloids. Noodles cooking loss reduced to 5.9 % with the addition of guar gum. Sensory scores for the noodles were above 8 in 15 cm scale. Colour value showed an increase in ‘b’ value, indicating increase in yellowness of samples. Texture of noodles became firm with the addition of CF. IVSD (In vitro starch digestibility) reduced from 71 to 29 %. There was a network like formation due to hydrocolloids was observed in SEM, which is the reason for slow release of glucose. Thus, can be used as substitution in noodles and can be included in the diet of malnutritious and diabetic population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Uthayakumaran, C.W. Wrigley, in Cereal Grains Assessing and Managing Quality, ed. by C.W. Wrigley, I.L. Batey (Woodhead publishing limited, New Delhi, 2010), pp. 59–111

    Chapter  Google Scholar 

  2. S. Kaur, M. Das, Food Sci. Biotechnol. 20(4), 861–875 (2011)

    Article  Google Scholar 

  3. P.D. Ribotta, G.T. Perez, M.C. Anon, A.E. Leon, Food Bioprocess. Technol. 3, 395–405 (2010)

    Article  Google Scholar 

  4. E. Molina, A.B. Defaye, D.A. Ledward, Food Hydrocolloids 16, 625–632 (2002)

    Article  CAS  Google Scholar 

  5. I. Goni, C. Valentin-Gamazo, Food Chem. 81(4), 511–515 (2003)

    Article  CAS  Google Scholar 

  6. S. Chillo, J. Laverse, P.M. Falcone, A. Protopapa, D. Nobile, J. Cereal Sci. 47(2), 144–152 (2008)

    Article  Google Scholar 

  7. D.J.A. Jenkins, M.J. Thorne, K. Camelon, A.L. Jenkins, A.V. Rao, R.H. Taylor, L.U. Thompson, J. Kalmusky, R. Reichert, T. Francis, Am. J. Clin. Nutr. 36, 1093–1101 (1982)

    CAS  Google Scholar 

  8. Y. Bahnassey, K. Khan, Cereal Chem. 63(3), 216–219 (1986)

    Google Scholar 

  9. J. Tovar, Bioavailability of starch in processed legumes. Importance of physical inaccessibility ans retreogradation. PhD Thesis, University of Lund, 1992

  10. I. Bjork, H.L. Elmstahl, Proc. Nutr. Soc. 62, 201–206 (2003)

    Article  Google Scholar 

  11. Association of Official Analytical Chemists, Official methods of analysis, 14th edn. (AOAC, Washington, DC, 1984)

    Google Scholar 

  12. American Association of Cereal Chemists (AACC), AACC method 44-15A, one stage moisture air oven method; AACC method 08-01, ash–basic Method; AACC method 46-13, micro-Kjeldahl method; AACC method 22-10A; AACC method 16-50; pasta cooking time- 66–50, AACC, AACC 2, method 54–21, Approved Methods of the AACC, 10th edn. (American Association of Cereal Chemists (AACC), St. Paul, 2000)

    Google Scholar 

  13. S. Bharath Kumar, P. Prabhasankar, J Food Sci. Technol. (2013). doi:10.1007/s13197-013-1126-4

    Google Scholar 

  14. S. Madhumitha, P. Prabhasankar, J Texture Stud. 42(6), 441–450 (2011)

    Article  Google Scholar 

  15. H.N. Englyst, S.M. Kingman, J.H. Cummings, Eur. J. Clin. Nutr. 46, S33–S50 (1992)

    Google Scholar 

  16. U. Singh, R. Jambunathan, J. Food Sci. 46(5), 1364–1367 (1981)

    Article  CAS  Google Scholar 

  17. P. Prabhasankar, P. Ganeshan, N. Baskar, Food Sci. Technol. Int. 15, 471–479 (2009)

    Article  CAS  Google Scholar 

  18. P. Prabhasankar, Food Chem. 78, 81–87 (2002)

    Article  CAS  Google Scholar 

  19. H. Stone, J. Sidel, R.C. Singleton, J. Food Technol. 28(11), 24–34 (1974)

    Google Scholar 

  20. H. Stone, J. Sidel, S. Oliver, A. Woolsey, R.C. Singleton, J. Food Technol. 58(8), 48–52 (1974)

    Google Scholar 

  21. B.D. Duncan, Biometrics 11, 1–42 (1955)

    Article  Google Scholar 

  22. K. Lorenz, W. Dilsaver, M. Wolt, Bakers’ Digest 53, 39–45 (1979)

    Google Scholar 

  23. N.M.H. Rasmay, G.A. El-Shatanovi, K.E.W. Hassan, Ann. Agric. Sci. 45, 555–570 (2000)

    Google Scholar 

  24. G.A. Yanez-Farias, V. Bernal-Aguilar, L. Ramirez-Rodriguez, J.M. Barron-Hoyos, Food Sci. Technol. Int. 5, 89–93 (1999)

    Article  Google Scholar 

  25. C.M. Rosell, J.A. Rojas, C.B. Barber, Food Hydrocolloids 15(1), 75–81 (2001)

    Article  CAS  Google Scholar 

  26. P.R. Duarte, C.M. Mock, L.D. Satterleei, Cereal Chem. 73(3), 381–387 (1996)

    Google Scholar 

  27. D. Sabanis, E. Makri, G. Doxastakis, J. Sci. Food Agric. 86, 1938–1944 (2006)

    Article  CAS  Google Scholar 

  28. E.A.A. Arab, I.M.F. Helmy, G.F. Bareh, J. Am. Sci. 6(10), 1055–1072 (2010)

    Google Scholar 

  29. S. Susanna, P. Prabhasankar, Food Sci. Technol. Int. 18(4), 403–411 (2013)

    Article  Google Scholar 

  30. J.A. Wood, J. Cereal Sci. 49, 128–133 (2009)

    Article  CAS  Google Scholar 

  31. M.A. Nobile, A. Baiano, A. Conte, G. Mocci, J. Cereal Sci. 41, 347–356 (2005)

    Article  Google Scholar 

  32. M.J. Sissons, N.E. Egan, M.C. Gianibelli, Cereal Chem. 82, 601–608 (2005)

    Article  CAS  Google Scholar 

  33. M.C. Gianibelli, M.J. Sissons, I.L. Batey, Cereal Chem. 82, 321–327 (2005)

    Article  CAS  Google Scholar 

  34. C.R. Shreenithee, P. Prabhasankar, J Food Meas Charact. 7(4), 166–176 (2013)

    Article  Google Scholar 

  35. J. Holm, I. Bjorck, Am. J. Clin. Nutr. 55(2), 420–429 (1992)

    CAS  Google Scholar 

  36. A. Dartois, J. Singh, L. Kaur, H. Singh, Food Biophys. 5(3), 149–160 (2010)

    Article  Google Scholar 

  37. R. Jyotsna, P. Prabhasankar, D. Indrani, G.V. Rao, Eur. Food Res. Technol. 218(6), 557–562 (2004)

    Article  CAS  Google Scholar 

  38. P. Prabhasankar, R. Jyotsna, D. Indrani, G.V. Rao, J. Food Eng. 80(4), 1239–1245 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabhasankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porwal, V.B., Bharath Kumar, S., Madhumathi, R. et al. Influence of health based ingredient and its hydrocolloid blends on noodle processing. Food Measure 8, 283–295 (2014). https://doi.org/10.1007/s11694-014-9187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-014-9187-2

Keywords

Navigation