Skip to main content

Advertisement

Log in

Computational model for monitoring cholesterol metabolism

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

A non-deterministic finite automaton is designed to observe the cholesterol metabolism with the states of acceptance and rejection. The acceptance state of the automaton depicts the normal level of metabolism and production of good cholesterol as an end product. The rejection state of this machine shows the inhibition of enzymatic activity in cholesterol synthesis and removal of free fatty acids. The deficiency in human cholesterol metabolism pathway results in abnormal accumulation of cholesterol in plasma, arterial tissues leading to diseases such as hypercholesterolemia, atherosclerosis respectively and formation of gallstones. The designed machine can be used to monitor the cholesterol metabolism at molecular level through regulation of enzymes involved in the biosynthesis and metabolism of cholesterol for the treatment of diseases incident due to the respective metabolic disorder. In addition, an algorithm for this machine has been developed to compare the programmed string with the given string. This study demonstrates the construction of a machine that is used for the development of molecular targeted therapy for the disorders in cholesterol metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali RMM, Gurusamy PD, Ramachandran S (2014) Computational regulatory model for detoxification of ammonia from urea cycle in liver. Turk J Biol. doi:10.3906/biy-1401-50

  • Banerji A (2013) An attempt to construct a (general) mathematical framework to model biological “context-dependence”. Syst Synth Biol 7:221–227

    Article  PubMed  Google Scholar 

  • Banerji A (2014) A probabilistic model to describe the dual phenomena of biochemical pathway damage and biochemical pathway repair. arXiv:1404.0701 [q-bio.OT]

  • Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434

    Article  CAS  PubMed  Google Scholar 

  • Bennion LJ, Grundy SM (1975) Effects of obesity and caloric intake on biliary lipid metabolism in man. J Clin Invest 56:996–1011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blakes J, Twycross J, Romero-Campero FJ, Krasnogor N (2011) The Infobiotics Workbench: an integrated in silico modelling platform for Systems and Synthetic Biology. Bioinformatics 27:3323–3324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denning PJ (2005) Is computer science science? Commun ACM 48:27–31

    Article  Google Scholar 

  • Dhar PK, Giuliani A (2010) Laws of biology: why so few? Syst Synth Biol 4:7–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Dietschy JMI, Gamel WG (1971) Cholesterol synthesis in the intestine of man: regional differences and control mechanisms. J Clin Invest 50:872–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grundy SM (1978) Cholesterol metabolism in man (Medical progress). West J Med 128:13–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herman GE (2003) Disorders of cholesterol biosynthesis: prototypic metabolic malformation syndromes. Hum Mol Genet 12:R75–R88

    Article  CAS  PubMed  Google Scholar 

  • Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation. Addison-Wesley, Boston

    Google Scholar 

  • Houten SM, Wanders RJ, Waterham HR (2000) Biochemical and genetic aspects of mevalonate kinase and its deficiency. Biochim Biophys Acta 1529:19–32

    Article  CAS  PubMed  Google Scholar 

  • Kari L (1997) DNA computing: the arrival of biological mathematics. Math Intell 19:9–22

    Google Scholar 

  • Kelley RI, Herman GE (2001) Inborn errors of sterol biosynthesis. Annu Rev Genomics Hum Genet 2:299–341

    Article  CAS  PubMed  Google Scholar 

  • Marguet P, Balagadde F, Tan C, You L (2007) Biology by design: reduction and synthesis of cellular components and behaviour. J R Soc Interface 4:607–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mead JR, Ramji DP (2002) The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc Res 55:261–269

    Article  CAS  PubMed  Google Scholar 

  • Muhammad MR, Devi GP, Selvakumar R (2013) A computational model for monitoring glycolysis process in cancer cells. J Bioinf Intell Control 2:300–304

    Article  Google Scholar 

  • Nowak R, Plucienniczak A (2008) Finite state automata built on DNA. Biocybern Biomed Eng 28:3–19

    Google Scholar 

  • Pandit J, Danley DE, Schulte GK, Mazzalupo S, Pauly TA, Hayward CM, Hamanaka ES, Thompson JF, Harwood HJ Jr (2000) Crystal structure of human squalene synthase: a key enzyme in cholesterol biosynthesis. J Biol Chem 275:30610–30617

    Article  CAS  PubMed  Google Scholar 

  • Priami C (2009) Algorithmic systems biology. Commun ACM 52:80–88

    Article  Google Scholar 

  • Selvakumar R, Muhammad MR, Devi GP (2013) Computational model for the extraction of human erythropoietin. Int J ChemTech Res 5:2623–2629

    CAS  Google Scholar 

  • Waterham HR (2002) Inherited disorders of cholesterol biosynthesis. Clin Genet 61:393–403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Ms. M. Faleela Farzana for supporting the algorithm part.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rashith Muhammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, R., Rashith Muhammad, M. & Poornima Devi, G. Computational model for monitoring cholesterol metabolism. Syst Synth Biol 8, 307–311 (2014). https://doi.org/10.1007/s11693-014-9152-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-014-9152-8

Keywords

Navigation