Skip to main content
Log in

Experiments inside a box lead to out-of-the-box ideas on cellular organization

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Microtubules are biopolymers that assemble from tubulin dimers into hollow tubes and play an important role in cellular organization. Their fascinating properties and variety of functions, like for example chromosome segregation, sperm propagation and polarity establishment, have made them a popular subject of study. In this perspective I focus on the contribution of minimal in vitro systems to our understanding of microtubule organization within the physical confinement of a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L et al (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450:1100–1105

    Article  CAS  PubMed  Google Scholar 

  • Bieling P, Telley IA, Surrey T (2010) A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142:420–432

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Lansky Z, Fink G, Ruhnow F, Diez S et al (2011) Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat Cell Biol 13:1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K et al (2008) XMAP215 is a processive microtubule polymerase. Cell 132:79–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cosentino Lagomarsino M, Tanase C, Vos JW, Emons AM, Mulder BM et al (2007) Microtubule organization in three-dimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach. Biophys J 92:1046–1057

    Article  PubMed  Google Scholar 

  • Elbaum M, Kuchnir Fygenson D, Libchaber A (1996) Buckling microtubules in vesicles. Phys Rev Lett 76:4078–4081

    Article  CAS  PubMed  Google Scholar 

  • Faivre-Moskalenko C, Dogterom M (2002) Dynamics of microtubule asters in microfabricated chambers: the role of catastrophes. Proc Natl Acad Sci USA 99:16788–16793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gennerich A, Carter AP, Reck-Peterson SL, Vale RD (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Good MC, Vahey MD, Skandarajah A, Fletcher DA, Heald R (2013) Cytoplasmic volume modulates spindle size during embryogenesis. Science 342:856–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grill SW, Gonczy P, Stelzer EHK, Hyman AA (2001) Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409:630–633

    Article  CAS  PubMed  Google Scholar 

  • Hazel J, Krutkramelis K, Mooney P, Tomschik M, Gerow K et al (2013) Changes in cytoplasmic volume are sufficient to drive spindle scaling. Science 342:853–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holy TE, Dogterom M, Yurke B, Leibler S (1997) Assembly and positioning of microtubule asters in microfabricated chambers. Proc Natl Acad Sci USA 94:6228–6231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607

    Article  CAS  PubMed  Google Scholar 

  • Kerssemakers JWJ, Munteanu EL, Laan L, Noetzel TL, Janson ME et al (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709–712

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita K, Arnal I, Desai A, Drechsel DN, Hyman AA (2001) Reconstitution of physiological microtubule dynamics using purified components. Science 294:1340–1343

    Article  CAS  PubMed  Google Scholar 

  • Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M et al (2012a) Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148:502–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laan L, Roth S, Dogterom M (2012) End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers. Cell Cycle 11:3750–3757

    Google Scholar 

  • Minc N, Burgess D, Chang F (2011) Influence of cell geometry on division-plane positioning. Cell 144:414–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  • Mulder B, Janson M (2014) Microtubule networks for Plant Cell Division. Sys Synth Biol. doi:10.1007/s11693-014-9142-x

  • Nedelec FJ, Surrey T, Maggs AC, Leibler S (1997) Self-organization of microtubules and motors. Nature 389:305–308

    Article  CAS  PubMed  Google Scholar 

  • Pavin N, Laan L, Ma R, Dogterom M, Julicher F (2012) Positioning of microtubule organizing centers by cortical pushing and pulling forces. New J Phys. doi:10.1088/1367-2630/14/10/105025

  • Picone R, Ren X, Ivanovitch KD, Clarke JD, McKendry RA et al (2010) A polarised population of dynamic microtubules mediates homeostatic length control in animal cells. PLoS Biol 8:e1000542

    Article  PubMed Central  PubMed  Google Scholar 

  • Pinot M, Chesnel F, Kubiak JZ, Arnal I, Nedelec FJ et al (2009) Effects of confinement on the self-organization of microtubules and motors. Curr Biol 19:954–960

    Article  CAS  PubMed  Google Scholar 

  • Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N et al (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romet-Lemonne G, VanDuijn M, Dogterom M (2005) Three-dimensional control of protein patterning in microfabricated devices. Nano Lett 5:2350–2354

    Article  CAS  PubMed  Google Scholar 

  • Terenna CR, Makushok T, Velve-Casquillas G, Baigl D, Chen Y et al (2008) Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Curr Biol 18:1748–1753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tran PT, Marsh L, Doye V, Inoue S, Chang F (2001) A mechanism for nuclear positioning in fission yeast based on microtubule pushing (vol 153, pg 397, 2001). J Cell Biol 153:891

    Article  CAS  Google Scholar 

  • Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA et al (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177:1104–1105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank M. Dogterom for constant support and insightful discussions during my research on microtubule organization in her group; B. Neugeboren and M. Costa Coehlo for critical reading of the manuscript; M. Mueller for insightful discussions. I gratefully acknowledge support from the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liedewij Laan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laan, L. Experiments inside a box lead to out-of-the-box ideas on cellular organization. Syst Synth Biol 8, 223–226 (2014). https://doi.org/10.1007/s11693-014-9139-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-014-9139-5

Keywords

Navigation