Skip to main content
Log in

An Integrated Framework for Hybrid Zone Models

  • Essay
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Hybridization, where distinguishable populations meet and interbreed resulting in hybrid offspring, is useful for understanding the mechanisms involved in the evolution of reproductive isolation. Hybridization can range from interactions with near-complete reproductive isolation, to stable zones, to complete intergradation. Several models explain how stable hybrid zones are maintained, but each model emphasizes a special case and some zones fit more than one model. The models also do not emphasize moving hybrid zones or occasional hybridization events that add genetic variation to the parental populations. This essay unifies the current models along a continuum of selection pressures organized by geography. Current models differ in assumed hybrid fitness and whether selection is intrinsic or extrinsic. The type of selection is a less general category than the direction of selection (for or against hybrids); multiple types of selection can exist in each zone depending on trait. Thus, the diversity and combinations of selection types make selection direction the most general category for sorting hybrid zones, and variation in selection over geography shapes the spatial extent (in concert with dispersal), movement, and stability of a hybrid zone. This framework is useful for considering zone structure both at the whole organism level and at individual genes or traits. Unifying hybrid zones models by the geographic range of selection pressure organizes each zone into context along the continuum regardless of its fit within one of the classic models, helping us explicitly consider what assumptions are made about the zone and providing direction for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott, R. J., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J. E., Bierne, N., et al. (2013). Hybridization and speciation. Journal of Evolutionary Biology, 26(2), 229–246.

    Article  CAS  PubMed  Google Scholar 

  • Abbott, R. J., & Brennan, A. C. (2014). Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130346.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arnold, M. L. (1997). Natural hybridization and evolution. New York: Oxford University Press.

    Google Scholar 

  • Arntzen, J. W., & Wallis, G. P. (1991). Restricted gene flow in a moving hybrid zone of the newts Triturus cristatus and T. marmoratus in western France. Evolution, 45(4), 805–826.

    Article  Google Scholar 

  • Barton, N. H. (1992). On the spread of new gene combinations in the third phase of Wright’s shifting-balance. Evolution, 46(2), 551–557.

    Article  Google Scholar 

  • Barton, N. H., & Hewitt, G. M. (1981). The genetic basis of hybrid inviability in the grasshopper Podisma pedestris. Heredity, 47(3), 367–383.

    Article  Google Scholar 

  • Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113–148.

    Article  Google Scholar 

  • Barton, N. H., & Hewitt, G. M. (1989). Adaptation, speciation and hybrid zones. Nature, 341, 497–503.

    Article  CAS  PubMed  Google Scholar 

  • Behm, J. E., Ives, A. R., & Boughman, J. W. (2010). Breakdown in postmating isolation and the collapse of a species pair through hybridization. American Naturalist, 175(1), 11–26.

    Article  PubMed  Google Scholar 

  • Bert, T. M., & Arnold, W. S. (1995). An empirical test of predictions of two competing models for the maintenance and fate of hybrid zones: Both models are supported in a hard-clam hybrid zone. Evolution, 49(2), 276–289.

    Article  Google Scholar 

  • Björklund, M. (2013). The unpredictable impact of hybridization. Journal of Evolutionary Biology, 26(2), 274–275.

    Article  PubMed  Google Scholar 

  • Brumfield, R. T., Jernigan, R. W., McDonald, D. B., & Braun, M. J. (2001). Evolutionary implications of divergent clines in an avian (Manacus: Aves) hybrid zone. Evolution, 55(10), 2070–2087.

    Article  CAS  PubMed  Google Scholar 

  • Buggs, R. J. A. (2007). Empirical study of hybrid zone movement. Heredity, 99(3), 301–312.

    Article  CAS  PubMed  Google Scholar 

  • Butlin, R. K., Galindo, J., & Grahame, J. W. (2008). Sympatric, parapatric or allopatric: The most important way to classify speciation? Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1506), 2997–3007.

    Article  Google Scholar 

  • Campbell, D. R., & Waser, N. M. (2007). Evolutionary dynamics of an Ipomopsis hybrid zone: Confronting models with lifetime fitness data. American Naturalist, 169(3), 298–310.

    Article  PubMed  Google Scholar 

  • Campbell, D. R., Waser, N. M., Aldridge, G., & Wu, C. A. (2008). Lifetime fitness in two generations of Ipomopsis hybrids. Evolution, 60(10), 2616–2627.

    Article  Google Scholar 

  • Carling, M. D., & Zuckerberg, B. (2011). Spatio-temporal changes in the genetic structure of the Passerina bunting hybrid zone. Molecular Ecology, 20, 1166–1175.

    Article  PubMed  Google Scholar 

  • Curry, C. M., & Patten, M. A. (2014). Current and historical extent of phenotypic variation in the Tufted and Black-crested Titmouse (Paridae) hybrid zone in the southern Great Plains. American Midland Naturalist, 171, 271–300.

    Article  Google Scholar 

  • Dasmahapatra, K. K., Blum, M. J., Aiello, A., Hackwell, S., Davies, N., Bermingham, E. P., & Mallet, J. (2002). Inferences from a rapidly moving hybrid zone. Evolution, 56(4), 741–753.

    Article  PubMed  Google Scholar 

  • Donovan, L. A., Rosenthal, D. R., Sanchez-Velenosi, M., Rieseberg, L. H., & Ludwig, F. (2010). Are hybrid species more fit than ancestral parent species in current hybrid species habitats? Journal of Evolutionary Biology, 23, 805–816.

    Article  CAS  PubMed  Google Scholar 

  • Ellegren, H., Smeds, L., Burri, R., Olason, P. I., Backström, N., Kawakami, T., et al. (2012). The genomic landscape of species divergence in Ficedula flycatchers. Nature, 491(7426), 756–760.

    CAS  PubMed  Google Scholar 

  • Endler, J. A. (1973). Gene flow and population differentiation. Science, 179(4070), 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Endler, J. A. (1977). Geographic variation, speciation, and clines. Monographs in Population Biology, 10, 1–246.

    CAS  PubMed  Google Scholar 

  • Fitzpatrick, B. M., & Shaffer, H. B. (2004). Environment-dependent admixture dynamics in a tiger salamander hybrid zone. Evolution, 58(6), 1282–1293.

    Article  CAS  PubMed  Google Scholar 

  • Gompert, Z., Lucas, L. K., Nice, C. C., Fordyce, J. A., Forister, M. L., & Buerkle, C. A. (2012). Genomic regions with a history of divergent selection affect fitness of hybrids between two butterfly species. Evolution, 66(7), 2167–2181.

    Article  PubMed  Google Scholar 

  • Good, T. P., Ellis, J. C., Annett, C. A., & Pierotti, R. (2000). Bounded hybrid superiority in an avian hybrid zone: Effects of mate, diet, and habitat choice. Evolution, 54(5), 1774–1783.

    Article  CAS  PubMed  Google Scholar 

  • Gow, J. L., Peichel, C. L., & Taylor, E. B. (2007). Ecological selection against hybrids in natural populations of sympatric threespine sticklebacks. Journal of Evolutionary Biology, 20, 2173–2180.

    Article  CAS  PubMed  Google Scholar 

  • Grant, P. R. (1993). Hybridization of Darwin’s finches on Isla Daphne Major, Galapagos. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 340(1291), 127–139.

    Article  Google Scholar 

  • Grant, P. R., & Grant, B. R. (1994). Phenotypic and genetic effects of hybridization in Darwin’s finches. Evolution, 48(2), 297–316.

    Article  Google Scholar 

  • Grant, P. R., & Grant, B. R. (2002). Unpredictable evolution in a 30-year study of Darwin’s finches. Science, 296(5568), 707–711.

    Article  CAS  PubMed  Google Scholar 

  • Haavie, J., Borge, T., Bures, S., Garamszegi, L. Z., Lampe, H. M., Moreno, J., et al. (2004). Flycatcher song in allopatry and sympatry—Convergence, divergence and reinforcement. Journal of Evolutionary Biology, 17, 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Hedrick, P. W. (2013). Adaptive introgression in animals: Examples and comparison to new mutation and standing variation as sources of adaptive variation. Molecular Ecology, 22, 4606–4618.

    Article  PubMed  Google Scholar 

  • Howard, D. J., Waring, G. L., Tibbets, C. A., & Gregory, P. G. (1993). Survival of hybrids in a mosaic hybrid zone. Evolution, 47(3), 789–800.

    Article  Google Scholar 

  • Huerta-Sánchez, E., DeGiorgio, M., Pagani, L., Tarekegn, A., Ekong, R., Antao, T., et al. (2013). Genetic signatures reveal high-altitude adaptation in a set of Ethiopian populations. Molecular Biology and Evolution, 30(8), 1877–1888.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ingleby, F. C., Hunt, J., & Hosken, D. J. (2010). The role of genotype-by-environment interactions in sexual selection. Journal of Evolutionary Biology, 23(10), 2031–2045.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami, T., Butlin, R. K., Adams, M., Paull, D. J., & Cooper, S. J. B. (2009). Genetic analysis of a chromosomal hybrid zone in the Australian morabine grasshoppers (Vandiemenella viatica species group). Evolution, 63(1), 139–152.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, H., Vrieling, K., & Klinkhamer, P. G. L. (2005). Maternal effects and heterosis influence the fitness of plant hybrids. New Phytologist, 166, 685–694.

    Article  PubMed  Google Scholar 

  • Kisel, Y., & Barraclough, T. G. (2010). Speciation has a spatial scale that depends on levels of gene flow. American Naturalist, 175(3), 316–334.

    Article  PubMed  Google Scholar 

  • Kleindorfer, S., O’Connor, J. A., Dudaniec, R. Y., Myers, S. A., Robertson, J., & Sulloway, F. J. (2014). Species collapse via hybridization in Darwin’s tree finches. American Naturalist, 183(3), 325–341.

    Article  PubMed  Google Scholar 

  • Krosby, M., & Rohwer, S. (2010). Ongoing movement of the Hermit Warbler X Townsend’s Warbler hybrid zone. PLoS ONE, 5(11), e14164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mallet, J. (2008). Hybridization, ecological races and the nature of species: Empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1506), 2971–2986.

    Article  Google Scholar 

  • Mallet, J., & Barton, N. H. (1989). Strong natural selection in a warning-color hybrid zone. Evolution, 43(2), 421–431.

    Article  Google Scholar 

  • Marshall, J. L., Arnold, M. L., & Howard, D. J. (2002). Reinforcement: The road not taken. Trends in Ecology and Evolution, 17(12), 558–563.

    Article  Google Scholar 

  • Martin, L. J., & Cruzan, M. B. (1999). Patterns of hybridization in the Piriqueta caroliniana complex in central Florida: Evidence for an expanding hybrid zone. Evolution, 53(4), 1037–1049.

    Article  Google Scholar 

  • Martin, C. H., & Wainwright, P. C. (2013a). Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science, 339(6116), 208–211.

    Article  CAS  PubMed  Google Scholar 

  • Martin, C. H., & Wainwright, P. C. (2013b). On the measurement of ecological novelty: Scale-eating pupfish are separated by 168 my from other scale-eating fishes. PLoS ONE, 8(8), e71164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matute, D. M., Novak, C. J., & Coyne, J. A. (2009). Temperature-based extrinsic reproductive isolation in two species of Drosophila. Evolution, 63(3), 595–612.

    Article  PubMed  Google Scholar 

  • Miglia, K. J., McArthur, E. D., Redman, R. S., Rodriguez, R. J., Zak, J. C., & Freeman, D. C. (2007). Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah. American Journal of Botany, 94(3), 425–436.

    Article  PubMed  Google Scholar 

  • Moore, W. S. (1977). An evaluation of narrow hybrid zones in vertebrates. Quarterly Review of Biology, 52, 263–277.

    Article  Google Scholar 

  • Moriarty Lemmon, E., & Lemmon, A. R. (2010). Reinforcement in chorus frogs: Lifetime fitness estimates including intrinsic natural and sexual selection against hybrids. Evolution, 64(6), 1748–1761.

    Article  Google Scholar 

  • Nolte, A. W., Gompert, Z., & Buerkle, C. A. (2009). Variable patterns of introgression in two sculpin hybrid zones suggest that genomic isolation differs among populations. Molecular Ecology, 18, 2615–2627.

    Article  CAS  PubMed  Google Scholar 

  • Noor, M. A. F. (1999). Reinforcement and other consequences of sympatry. Heredity, 83, 503–508.

    Article  PubMed  Google Scholar 

  • Nosil, P. (2013). Degree of sympatry affects reinforcement in Drosophila. Evolution, 67(3), 868–872.

    Article  PubMed  Google Scholar 

  • Pardo-Diaz, C., Salazar, C., Baxter, S. W., Merot, C., Figueiredo-Ready, W., Joron, M., et al. (2012). Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genetics, 8(6), e1002752.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parsons, T. J., Olson, S. L., & Braun, M. J. (1993). Unidirectional trait spread of secondary sexual plumage traits across an avian hybrid zone. Science, 260, 1643–1646.

    Article  CAS  PubMed  Google Scholar 

  • Patten, M. A., & Campbell, K. F. (2000). Typological thinking and the conservation of subspecies: The case of the San Clemente Island Loggerhead Shrike. Diversity and Distributions, 6(4), 177–188.

    Article  Google Scholar 

  • Perry, W. L., Feder, J. L., Dwyer, G., & Lodge, D. M. (2001). Hybrid zone dynamics and species replacement between Orconectes crayfishes in a northern Wisconsin lake. Evolution, 55(6), 1153–1166.

    Article  CAS  PubMed  Google Scholar 

  • Pfennig, K. S. (2007). Facultative mate choice drives adaptive hybridization. Science, 318, 965–967.

    Article  CAS  PubMed  Google Scholar 

  • Rand, D. M., & Harrison, R. G. (1989). Ecological genetics of a mosaic hybrid zone: Mitochondrial, nuclear, and reproductive differentiation of crickets by soil type. Evolution, 43(2), 432–449.

    Article  Google Scholar 

  • Reudink, M. W., Mech, S. G., Mullen, S. P., & Curry, R. L. (2007). Structure and dynamics of the hybrid zone between Black-capped Chickadee (Poecile atricapillus) and Carolina Chickadee (P. carolinensis) in southeastern Pennsylvania. Auk, 124(2), 463–478.

    Article  Google Scholar 

  • Rieseberg, L. H., Raymond, O., Rosenthal, D. M., Lai, Z., Livingstone, K., Nakazato, T., et al. (2003). Major ecological transitions in wild sunflowers facilitated by hybridization. Science, 301, 1211–1216.

    Article  CAS  PubMed  Google Scholar 

  • Rolán-Alvarez, E., Johannesson, K., & Erlandsson, J. (1997). The maintenance of a cline in the marine snail Littorina saxatilis: The role of home site advantage and hybrid fitness. Evolution, 51(6), 1838–1847.

    Article  Google Scholar 

  • Rosenfield, J. A., & Kodric-Brown, A. (2003). Sexual selection promotes hybridization between Pecos pupfish, Cyprinodon pecosensis and sheepshead minnow, C. variegatus. Journal of Evolutionary Biology, 16, 595–606.

    Article  CAS  PubMed  Google Scholar 

  • Rowher, S., & Martin, P. R. (2007). Time since contact and gene flow may explain variation in hybrid frequencies among three Dendroica townsendi × D. occidentalis (Parulidae) hybrid zones. Auk, 124(4), 1347–1358.

    Article  Google Scholar 

  • Sætre, G.-P., Moum, T., Bureš, S., Král, M., Adamjan, M., & Moreno, J. (1997). A sexually selected character displacement in flycatchers reinforces premating isolation. Nature, 387(6633), 589–592.

    Article  Google Scholar 

  • Sambetti, J. M. B., Strasburg, J. L., Ortiz-Barrientos, D., Baack, E. J., & Rieseberg, L. H. (2012). Reconciling extremely strong barriers with high levels of gene exchange in annual sunflowers. Evolution, 66(5), 1459–1473.

    Article  Google Scholar 

  • Scascitelli, M., Whitney, K. D., Randell, R. A., King, M., Buerkle, C. A., & Rieseberg, L. H. (2010). Genome scan of hybridizing sunflowers from Texas (Helianthus annus and H. debilis) reveals asymmetric patterns of introgression and small islands of genomic differentiation. Molecular Ecology, 19, 521–541.

    Article  CAS  PubMed  Google Scholar 

  • Servedio, M. R., & Noor, M. A. F. (2003). The role of reinforcement in speciation: Theory and data. Annual Review of Ecology Evolution and Systematics, 34, 339–364.

    Article  Google Scholar 

  • Shaw, K. L., & Mendelson, T. C. (2013). The targets of selection during reinforcement. Journal of Evolutionary Biology, 26(2), 286–287.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., Endepols, S., Klemann, N., Richter, D., Matuschka, F.-R., Shih, C.-H., et al. (2011). Adaptive introgression of anticoagulant rodent poison resistance by hybridization between Old World mice. Current Biology, 21, 1296–1301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vallender, R., Robertson, R. J., Friesen, V. L., & Lovette, I. J. (2007). Complex hybridization dynamics between golden-winged and blue-winged warblers (Vermivora chrysoptera and Vermivora pinus) revealed by AFLP, microsatellite, intron and mtDNA markers. Molecular Ecology, 16(10), 2017–2029.

    Article  CAS  PubMed  Google Scholar 

  • Whitney, K. D., Randell, R. A., & Rieseberg, L. H. (2006). Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. American Naturalist, 167(6), 794–807.

    Article  PubMed  Google Scholar 

  • Whitney, K. D., Randell, R. A., & Rieseberg, L. H. (2010). Adaptive introgression of abiotic tolerance traits in the sunflower Helianthus annuus. New Phytologist, 187(1), 230–239.

    Article  PubMed  Google Scholar 

  • Whittemore, A. T., & Schall, B. A. (1991). Interspecific gene flow in sympatric oaks. Proceedings of the National Academy of Sciences USA, 88, 2540–2544.

    Article  CAS  Google Scholar 

  • Woodruff, D. S. (1973). Natural hybridization and hybrid zones. Systematic Zoology, 22(3), 213–218.

    Article  Google Scholar 

  • Woodruff, D. S. (1979). Postmating reproductive isolation in Pseudophryne and the evolutionary significance of hybrid zones. Science, 203(4380), 561–563.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to M. A. Patten, D. Landoll, A. J. Contina, G. Wellborn, W. T. Honeycutt, and four anonymous reviewers for insightful discussion and comments which have much improved this manuscript. The author was supported by a University of Oklahoma Alumni Fellowship and a U.S. Department of Education GAANN Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire M. Curry.

Ethics declarations

Conflict of interest

The author declares she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curry, C.M. An Integrated Framework for Hybrid Zone Models. Evol Biol 42, 359–365 (2015). https://doi.org/10.1007/s11692-015-9332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9332-9

Keywords

Navigation