Skip to main content

Advertisement

Log in

Geographical Body Size Clines in Sika Deer: Path Analysis to Discern Amongst Environmental Influences

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Using Japanese sika deer from boreal and subtropical forests, we investigated the effects of environmental factors on body size variation and tested the following ecological hypotheses pertaining to Bergmann’s rule in mammals: (1) heat conservation, (2) heat dissipation, (3) starvation resistance, (4) food availability and (5) insularity. Data on body sizes and habitats of sika deer from 31 populations on the Japanese archipelago were collected. Body mass and cranial greatest length (CGL; reflecting skeletal body size) were measured and analysed separately among gender groups. Path analyses were used to clarify inter-variable relationships and estimate direct and indirect effects of environmental variables on body size. Consistent with Bergmann’s rule, a clear latitudinal cline of body size was found for sika deer. Subsequent path analyses showed that the abiotic factors, specifically mean annual temperature and annual precipitation, had significant negative effects on body size, and annual temperature had the greatest effect among tested environmental variables. Winter severity and food availability during spring were significantly associated with body mass but not with CGL. Both heat conservation and dissipation hypotheses were accepted and food availability and starvation resistance hypotheses were applicable to variation of body mass but not to CGL, indicating that phenotypic changes in fat reserves strongly influence variation in body mass. Path diagram modelling of inter-variable relationships fit well for females but not for males, and unexplained variation of male body size suggested the presence of unidentified factors. Variation in mating systems among populations may effect body size variation of the male sika deer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashton, K. G. (2002a). Do amphibians follow Bergmann’s rule? Canadian Journal of Zoology, 80(4), 708–716.

    Article  Google Scholar 

  • Ashton, K. G. (2002b). Patterns of within-species body size variation of birds: Strong evidence for Bergmann’s rule. Global Ecology and Biogeography, 11(6), 505–523.

    Article  Google Scholar 

  • Ashton, K. G., & Feldman, C. R. (2003). Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution, 57(5), 1151–1163.

    Article  PubMed  Google Scholar 

  • Ashton, K. G., Tracy, M. C., & de Queiroz, A. (2000). Is Bergmann’s rule valid for mammals? American Naturalist, 156(4), 390–415.

    Article  Google Scholar 

  • Bergmann, C. (1847). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 1, 595–708.

    Google Scholar 

  • Borowik, T., Pettorelli, N., Soennichsen, L., & Jedrzejewska, B. (2013). Normalized difference vegetation index (NDVI) as a predictor of forage availability for ungulates in forest and field habitats. European Journal of Wildlife Research, 59(5), 675–682.

    Article  Google Scholar 

  • Boyer, A. G., Cartron, J.-L. E., & Brown, J. H. (2010). Interspecific pairwise relationships among body size, clutch size and latitude: Deconstructing a macroecological triangle in birds. Journal of Biogeography, 37(1), 47–56.

    Article  Google Scholar 

  • Christianson, D., & Creel, S. (2009). Fecal chlorophyll describes the link between primary production and consumption in a terrestrial herbivore. Ecological Applications, 19(5), 1323–1335.

    Article  PubMed  Google Scholar 

  • Clauss, M., Dittmann, M. T., Mueller, D. W. H., Meloro, C., & Codron, D. (2013). Bergmann’s rule in mammals: A cross-species interspecific pattern. Oikos, 122(10), 1465–1472.

    Google Scholar 

  • Foster, J. B. (1964). Evolution of mammals on islands. Nature, 202(492), 234–235.

    Article  Google Scholar 

  • Geist, V. (1999). Deer of the world. Shrewsbury: Swan Hill Press.

    Google Scholar 

  • Hatsukaichi City. (2012). Reports on the conservation and manegement surveys of sika deer population in Miyajima area. Hatsukaichi: Hatsukaichi City.

    Google Scholar 

  • Huston, M. A., & Wolverton, S. (2011). Regulation of animal size by eNPP, Bergmann’s rule, and related phenomena. Ecological Monographs, 81(3), 349–405.

    Article  Google Scholar 

  • James, F. C. (1970). Geographic size variation in birds and its relationship to climate. Ecology, 51(3), 365–390.

    Article  Google Scholar 

  • James, F. C. (1991). Complementary descriptive and experimental studies of clinal variation in birds. American Zoologist, 31(4), 694–706.

    Google Scholar 

  • Janis, C. M. (1990). Correlation of cranial and dental variables with body size in ungulates and macropodoids. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleontology: Estimation and biological implications (pp. 255–299). Cambridge: Cambridge University Press.

    Google Scholar 

  • Japan Wildlife Research Center. (1998). Annual reports on wildlife conservation and management: Conservation and management of the sika deer (Cervus nippon) in Miyazaki Prefecture, Japan. Tokyo: Japan Wildlife Research Center.

    Google Scholar 

  • Jarman, P. J. (1974). Social-organization of antelope in relation to their ecology. Behaviour, 48, 215–266.

    Article  Google Scholar 

  • Kaji, K. (Ed.). (2001). Study on conservation and management of sika deer in Hokkaido, 1996–2000. Sapporo: Hokkaido Institute of Environmental Sciences.

    Google Scholar 

  • Kaji, K., Takahashi, H., Okada, H., Kohira, M., & Yamanaka, M. (2009). Irruptive behavior of sika deer. In D. R. McCullough, S. Takatsuki, & K. Kaji (Eds.), Sika Deer: Biology and management of native and introduced populations (pp. 421–435). Tokyo: Springer.

    Chapter  Google Scholar 

  • Kira, T. (1948). On the altitudinal arrangement of climatic zones in Japan. Kanchi-Nougaku, 2, 143–173.

    Google Scholar 

  • Koganezawa, M., Inui, T., & Kitahara, M. (1986). Body weight and external carcass measurements of sika deer (Cervus nippon TEMMINCK) in Nikko-Ashio Mountains, Tochigi Prefecture, Japan. Memoirs of Tochigi Prefectural Meseum, 4, 29–53.

    Google Scholar 

  • Kojima, T., & Yamamoto, M. (2013). Covariance structure analysis. Tokyo: Ohmsha Ltd.

    Google Scholar 

  • Lindstedt, S. L., & Boyce, M. S. (1985). Seasonality, fasting endurance, and body size in mammals. American Naturalist, 125(6), 873–878.

    Article  Google Scholar 

  • Lomolino, M. V., Sax, D. F., Palombo, M. R., & van der Geer, A. A. (2012). Of mice and mammoths: Evaluations of causal explanations for body size evolution in insular mammals. Journal of Biogeography, 39(5), 842–854.

    Article  Google Scholar 

  • Martinez-Jauregui, M., San Miguel-Ayanz, A., Mysterud, A., Rodriguez-Vigal, C., Clutton-Brock, T., Langvatn, R., & Coulson, T. (2009). Are local weather, NDVI and NAO consistent determinants of red deer weight across three contrasting European countries? Global Change Biology, 15(7), 1727–1738.

    Article  Google Scholar 

  • Meiri, S. (2011). Bergmann’s Rule—What’s in a name? Global Ecology and Biogeography, 20, 203–207.

    Article  Google Scholar 

  • Meiri, S., & Dayan, T. (2003). On the validity of Bergmann’s rule. Journal of Biogeography, 30(3), 331–351.

    Article  Google Scholar 

  • Mitchell, B., McCowan, D., & Nicholson, I. A. (1976). Annual cycles of body weight and condition in Scottish red deer, Cervus elaphus. Journal of Zoology, 180(SEP), 107–127.

    Google Scholar 

  • Miura, S. (1984). Social behavior and territoriality in male sika deer (Ceruus nippon Temminck 1838) during the rut. Zeitschrift für Tierpsychologie, 64, 33–73.

    Article  Google Scholar 

  • Mousseau, T. A. (1997). Ectotherms follow the converse to Bergmann’s rule. Evolution, 51(2), 630–632.

    Article  Google Scholar 

  • Nagasaki Prefectural Board of Education. (1983). Reports on the analyses of the captured sika deer on Tsushima Island. Nagasaki: Nagasaki Prefectural Board of Education. (in Japanese).

    Google Scholar 

  • Nagata, J. (2009). Two genetically distinct lineages of the Japanese sika deer based on mitochondorial control regions. In D. R. McCullough, S. Takatsuki, & K. Kaji (Eds.), Sika Deer: Biology and management of native and introduced populations (pp. 27–41). Tokyo: Springer.

    Chapter  Google Scholar 

  • Nagata, J., Masuda, R., Tamate, H. B., Hamasaki, S., Ochiai, K., Asada, M., et al. (1999). Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: Comparison of mitochondrial D-loop region sequences. Molecular Phylogenetics and Evolution, 13(3), 511–519.

    Article  CAS  PubMed  Google Scholar 

  • Ochiai, K., & Asada, M. (1995). Growth in the body size of sika deer (Cervus nippon) on the Boso Peninsula, central Japan. Journal of the Natural History Museum and Institute, Chiba, 3(2), 223–232. (in Japanese with English abstract).

    Google Scholar 

  • Ochiai, K., & Asada, M. (1997). Growth pattern of the skull and limb bone size of sika deer, Cervus nippon, on the Boso Peninsula, central Japan. Journal of the Natural History Museum and Institute, Chiba, 4(2), 159–172. (in Japanese with English abstract).

    Google Scholar 

  • Ogura, G., Kawashima, Y., Kinjo, T., Higa, G., Ishibashi, O., Niizuma, J., & Zamami, M. (2003). A case of accidental death of a Kerama deer (Cervus nippon keramae) in Tokashiki Island. Japanese Journal of Zoo and Wildlife Medicine, 8(1), 55–62.

    Google Scholar 

  • Ohtaishi, N. (1986). Preliminary memorandum of classification, distribution and geographic variation on Sika deer. Honyurui Kagaku (Mammalian Science), 53, 13–17. (in Japanese with English abstract).

    Google Scholar 

  • Ozaki, M., Suwa, G., Kaji, K., Ohba, T., Hosoi, E., Koizumi, T., & Takatsuki, S. (2007). Correlations between feeding type and mandibular morphology in the sika deer. Journal of Zoology, 272(3), 244–257.

    Article  Google Scholar 

  • Pedhazur, E. J. (1982). Multiple regression in behavioral research. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Pérez-Barbería, F. J., Gordon, I. J., & Pagel, M. (2002). The origins of sexual dimorphism in body size in ungulates. Evolution, 56(6), 1276–1285.

    Article  PubMed  Google Scholar 

  • Pettorelli, N., Gaillard, J. M., Mysterud, A., Duncan, P., Stenseth, N. C., Delorme, D., et al. (2006). Using a proxy of plant productivity (NDVI) to find key periods for animal performance: The case of roe deer. Oikos, 112(3), 565–572.

    Article  Google Scholar 

  • Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510.

    Article  Google Scholar 

  • Riney, T. (1955). Evaluating condition of free-ranging red deer Cervus elaphus, with special reference to New Zealand. New Zealand Journal of Science and Technology, 36, 429–463.

    Google Scholar 

  • Rosenzweig, M. L. (1968). Strategy of body size in mammalian carnivores. American Midland Naturalist, 80(2), 299–315.

    Article  Google Scholar 

  • Shiroma, T., & Ohta, H. (1996) Geographical variation in cranial morphology in sika deer with a special reference on Kerama deer. In Okinawa Prefectural Board of Education (Ed.), A report of conservation and management of sika deer in Kerama Islands (pp. 13–55 (in Japanese)). Okinawa: Okinawa Prefectural Board of Education.

  • Shizuma, T. (2006). Developmental and seasonal changes of body size and condition in sika deer (Cervus nippon) in Yamaguchi Prefecture, Japan. Unpublished Master Thesis, Yamaguchi University, Yamaguchi (in Japanese).

  • Sondaar, P. Y. (1977). Insularity and its effect on mammal evolution. In M. K. Hecht, P. C. Goody, & B. M. Hecht (Eds.), Major patterns in vertebrate evolution (pp. 671–707). New York: Plenum Press.

    Chapter  Google Scholar 

  • Suzuki, M., Onuma, M., Yokoyama, M., Kaji, K., Yamanaka, M., & Ohtaishi, N. (2001). Body size, sexual dimorphism, and seasonal mass fluctuations in a larger sika deer subspecies, the Hokkaido sika deer (Cervus nippon yesoensis Heude, 1884). Canadian Journal of Zoology, 79(1), 154–159.

    Article  Google Scholar 

  • Takatsuki, S. (1998). A life of sika deer read from a tooth. Tokyo: Iwanami-shoten Publishing. (in Japanese).

    Google Scholar 

  • Takatsuki, S. (2006). Ecological history of sika deer. Tokyo: University of Tokyo Press. (in Japanese).

    Google Scholar 

  • Takiguchi, H., Tanaka, K., Ono, K., Hoshi, A., Minami, M., Yamauchi, K., & Takatsuki, S. (2012). Genetic variation and population structure of the Japanese sika deer (Cervus nippon) in the Tohoku District based on mitochondrial D-loop sequences. Zoological Science, 29(7), 433–436.

    Article  PubMed  Google Scholar 

  • Tamate, H. B., Tatsuzawa, S., Suda, K., Izawa, M., Doi, T., Sunagawa, K., et al. (1998). Mitochondrial DNA variations in local populations of the Japanese sika deer, Cervus nippon. Journal of Mammalogy, 79(4), 1396–1403.

    Article  Google Scholar 

  • Terada, C., Tatsuzawa, S., & Saitoh, T. (2012). Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia, 169(4), 981–994.

    Article  PubMed  Google Scholar 

  • Tochigi Prefectural Museum. (1989). Catalogue of the materials in the Tochigi Prefectural Museum (Natural History) (3), Mammals (I) sika deer (Cervus nippon TEMMINCK) in Nikko & Ashio. Utsunomiya: Tochigi Prefectural Museum.

    Google Scholar 

  • von den Driesch, A. (1976). A guide to the measurement of animal bones from archaeological sites. Cambridge: Harvard University Press.

    Google Scholar 

  • Whitehead, G. K. (1972). Deer of the world. Edinburgh: Constable & Co.

    Google Scholar 

  • Wigginton, J. D., & Dobson, F. S. (1999). Environmental influences on geographic variation in body size of western bobcats. Canadian Journal of Zoology, 77(5), 802–813.

    Article  Google Scholar 

  • Wolverton, S., Huston, M. A., Kennedy, J. H., Cagle, K., & Cornelius, J. D. (2009). Conformation to Bergmann’s rule in white-tailed deer can be explained by food availability. American Midland Naturalist, 162(2), 403–417.

    Article  Google Scholar 

  • Yuasa, T., Nagata, J., Hamasaki, S., Tsuruga, H., & Furubayashi, K. (2007). The impact of habitat fragmentation on genetic structure of the Japanese sika deer (Cervus nippon) in southern Kantoh, revealed by mitochondrial D-loop sequences. Ecological Research, 22(1), 97–106.

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by the persistent efforts of wildlife managers, field researchers and hunters all over Japan, who have substantially contributed specimens of culled sika deer and data collection. Special appreciation is extended to Ohtaishi, N., Masaki, E., Yoshida, T., Kaji, K., Endo, H. and Taru, H. for allowing the use of sika deer specimens in their collections. Comments from two anonymous reviewers improved the paper greatly. This research was supported by a Grant-in-Aid for JSPS Fellows (25-10506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mugino O. Kubo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubo, M.O., Takatsuki, S. Geographical Body Size Clines in Sika Deer: Path Analysis to Discern Amongst Environmental Influences. Evol Biol 42, 115–127 (2015). https://doi.org/10.1007/s11692-015-9303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9303-1

Keywords

Navigation