Skip to main content
Log in

Allometric Convergence, Acoustic Character Displacement, and Species Recognition in the Syntopic Cricket Frogs Acris crepitans and A. gryllus

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Evidence for reproductive character displacement (RCD) has accumulated more slowly than for ecological character displacement, perhaps because sampling scales and environmental covariates can obscure the role of RCD in speciation. We examined an early example of RCD in an anuran species group, the vocalizations of the sympatric cricket frogs Acris crepitans and A. gryllus. With a relatively fine spatial scale, we compared mixed-species choruses (syntopy), nearby locations where A. gryllus is recently extirpated (historic sympatry), and surrounding areas without secondary contact (allopatry). In each of these areas, we evaluated variation in dominant frequency, click rate, and mass of males. In addition, we determined the acoustic preferences of syntopic females. Temperature influenced dominant frequency of vocalizations in A. crepitans, but not in A. gryllus. Body size varied more and had a stronger influence on dominant frequency in A. crepitans than in A. gryllus. Consequently, the decrease in mass of A. crepitans in syntopy resulted in convergence of body size and divergence of dominant frequencies of the two species. In contrast, dominant frequency of A. crepitans did not differ between historic sympatry and allopatry. Females of both species used fine temporal structure to discriminate between conspecific and heterospecific vocalizations and showed no preferences for dominant frequency. Chorus noise limited the ability of A. gryllus females to detect and discriminate vocalizations, so convergence in mass might have resulted from RCD in dominant frequency to reduce heterospecific acoustic interference. However, influences other than RCD might have caused syntopic convergence in body size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, D. C., & Collyer, M. L. (2007). Analysis of character divergence along environmental gradients and other covariates. Evolution, 61(3), 510–515.

    Article  PubMed  Google Scholar 

  • Amezquita, A., Hodl, W., Lima, A. P., Castellanos, L., Erdtmann, L., & Carmozina, M. (2006). Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis. Evolution, 60(9), 1874–1887.

    Article  PubMed  Google Scholar 

  • Beane, J., Braswell, A., Mitchell, J., Palmer, W., & Harrison, J. (2010). Amphibians and reptiles of the Carolinas and Virginia (2nd ed.). Chapel Hill, NC: University of North Carolina Press.

    Google Scholar 

  • Bickford, D. P., Sheridan, J. A., & Howard, S. D. (2011). Climate change responses: Forgetting frogs, ferns and flies? Trends in Ecology & Evolution, 26(11), 553–554.

    Article  Google Scholar 

  • Blair, W. (1958). Mating call in the speciation of anuran amphibians. The American Naturalist, 92(862), 27–51.

    Article  Google Scholar 

  • Blair, W. F. (1974). Character displacement in frogs. American Zoologist, 14(4), 1119–1125.

    Google Scholar 

  • Blem, C., Steiner, J., & Miller, M. (1978). Comparison of jumping abilities of the cricket frogs Acris gryllus and Acris crepitans. Herpetologica, 34(3), 288–291.

    Google Scholar 

  • Brown, J. M., Hedtke, S. M., Lemmon, A. R., & Lemmon, E. M. (2010). When trees grow too long: Investigating the causes of highly inaccurate Bayesian branch-length estimates. Systematic Biology, 59(2), 145–161.

    Article  PubMed  Google Scholar 

  • Brown, W., & Wilson, E. O. (1956). Character displacement. Systematic Zoology, 5(2), 49–64.

    Article  Google Scholar 

  • Burmeister, S., Ophir, A., & Ryan, M. J. (2002). Information transfer during cricket frog contests. Animal Behaviour, 64(5), 715–725.

    Article  Google Scholar 

  • Burmeister, S., Wilczynski, W., & Ryan, M. J. (1999). Temporal call changes and prior experience affect graded signaling in the cricket frog. Animal Behaviour, 57(3), 611–618.

    Article  PubMed  Google Scholar 

  • Butlin, R. (1987). Speciation by reinforcement. Trends in Ecology & Evolution, 2(1), 8–13.

    Article  CAS  Google Scholar 

  • Capranica, R., Frishkopf, L., & Nevo, E. (1973). Encoding of geographic dialects in the auditory system of the cricket frog. Science, 182(4118), 1272–1275.

    Article  CAS  PubMed  Google Scholar 

  • Collins, J., & Taggart, T. (2009). Standard common and current scientific names for North American amphibians, turtles, reptiles & crocodilians (6th ed.). Lawrence, KS: Center for North American Herpetology.

    Google Scholar 

  • Conant, R., & Collins, J. (1991). A field guide to the reptiles and amphibians: Eastern and Central North America (3rd ed.). Boston, MA: Houghton Mifflin Company.

    Google Scholar 

  • Crampton, W. G. R., Lovejoy, N. R., & Waddell, J. C. (2011). Reproductive character displacement and signal ontogeny in a sympatric assemblage of electric fish. Evolution, 65(6), 1650–1666.

    Google Scholar 

  • Dayan, T., & Simberloff, D. (2005). Ecological and community-wide character displacement: The next generation. Ecology Letters, 8(8), 875–894.

    Article  Google Scholar 

  • Dobzhansky, T. (1940). Speciation as a stage in evolutionary divergence. The American Naturalist, 74(753), 312–321.

    Article  Google Scholar 

  • Duellman, W. E., & Sweet, S. S. (1999). Distribution patterns of amphibians in the Nearctic Region of North America. In W. E. Duellman (Ed.), Patterns of distribution of amphibians: A global perspective (pp. 31–109). Baltimore, MD: John Hopkins University Press.

    Google Scholar 

  • Faivovich, J., Haddad, C., Garcia, P., Frost, D., Campbell, J., & Wheeler, W. (2005). Systematic review of the frog family Hylidae, with special reference to Hylinae: Phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History, 294, 1–240.

    Google Scholar 

  • Fouquette, M. (1975). Speciation in chorus frogs. I. Reproductive character displacement in the Pseudacris nigrita complex. Systematic Zoology, 24(1), 16–23.

    Article  Google Scholar 

  • Gamble, T., Berendzen, P., Bradley Shaffer, H., Starkey, D., & Simons, A. (2008). Species limits and phylogeography of North American cricket frogs (Acris: Hylidae). Molecular Phylogenetics and Evolution, 48(1), 112–125.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology & Evolution, 26(6), 285–291.

    Article  Google Scholar 

  • Gerhardt, H. C. (1975). Sound pressure levels and radiation patterns of the vocalizations of some North American frogs and toads. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 102(1), 1–12.

    Article  Google Scholar 

  • Gerhardt, H. C. (1994). Reproductive character displacement of female mate choice in the grey treefrog, Hyla chrysoscelis. Animal Behaviour, 47(4), 959–969.

    Article  Google Scholar 

  • Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and Anurans: Common problems and diverse solutions. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Gerhardt, H. C., & Klump, G. M. (1988). Masking of acoustic signals by the chorus background noise in the green tree frog: A limitation on mate choice. Animal Behaviour, 36(3), 1247–1249.

    Article  Google Scholar 

  • Gerhardt, H. K., & Mudry, K. M. (1980). Temperature effects on frequency preferences and mating call frequencies in the Green Treefrog, Hyla cinerea (Anura: Hylidae). Journal of Comparative Physiology, 137, 1–6.

  • Goldberg, E., & Lande, R. (2006). Ecological and reproductive character displacement on an environmental gradient. Evolution, 60(7), 1344–1357.

    PubMed  Google Scholar 

  • Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin’s finches. Science, 313(5784), 224–226.

    Article  CAS  PubMed  Google Scholar 

  • Gray, R., & Brown, L. (2005). Decline of Northern cricket frogs (Acris crepitans). In M. Lannoo (Ed.), Amphibian declines: The conservation status of United States Species (pp. 47–54). Berkeley, CA: University of California Press.

    Chapter  Google Scholar 

  • Gröning, J., & Hochkirch, A. (2008). Reproductive interference between animal species. The Quarterly Review of Biology, 83(3), 257–282.

    Article  PubMed  Google Scholar 

  • Haenel, G., Strelow, B., & Micancin, J. (2012). Exploring evolutionary and ecological causes of a dynamic species boundary in cricket frogs. Ottowa, Canada: 1st Joint Congress on Evolutionary Biology.

  • Höbel, G., & Gerhardt, H. C. (2003). Reproductive character displacement in the acoustic communication system of green treefrogs (Hyla cinerea). Evolution, 57(4), 894–904.

    Article  PubMed  Google Scholar 

  • IUCN, International, C., & NatureServe. (2008). An analysis of amphibians on the 2008 IUCN Red List. International Union for the Conservation of Nature. Retrieved December 1, 2013, http://www.iucnredlist.org/initiatives/amphibians/analysis.

  • Jensen, J. B., Camp, C. D., Gibbons, W., & Elliot, M. J. (2008). Amphibians and reptiles of Georgia. Athens, GA: University of Georgia Press.

    Google Scholar 

  • Johanet, A., Secondi, J., Pays, O., Pagano, A., Lodé, T., & Lemaire, C. (2009). A case of reproductive character displacement in female palmate newts (Lissotriton helveticus). Comptes Rendus Biologies, 332(6), 548–557.

    Article  PubMed  Google Scholar 

  • Keddy-Hector, A., Wilczynski, W., & Ryan, M. J. (1992). Call patterns and basilar papilla tuning in cricket frogs. II. Intrapopulation variation and allometry. Brain, Behavior and Evolution, 39, 238–246.

    Article  CAS  PubMed  Google Scholar 

  • Kime, N., Burmeister, S., & Ryan, M. J. (2004). Female preferences for socially variable call characters in the cricket frog, Acris crepitans. Animal Behaviour, 68(6), 1391–1399.

    Article  Google Scholar 

  • Kirschel, A., Blumstein, D., & Smith, T. (2009). Character displacement of song and morphology in African tinkerbirds. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemmon, E. M. (2009). Diversification of conspecific signals in sympatry: Geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution, 63(5), 1155–1170.

    Article  PubMed  Google Scholar 

  • Littlejohn, M. (1959). Call differentiation in a complex of seven species of Crinia (Anura, Leptodactylidae). Evolution, 13(4), 452–468.

    Article  Google Scholar 

  • Littlejohn, M. (1965). Premating isolation in the Hyla ewingi complex (Anura: Hylidae). Evolution, 19(2), 234–243.

    Article  Google Scholar 

  • Littlejohn, M. J., & Fouquette, M. (1960). Call discrimination by female frogs of the Hyla versicolor complex. Copeia, 1960(1), 47–49.

    Article  Google Scholar 

  • Loftus-Hills, J., & Littlejohn, M. (1992). Reinforcement and reproductive character displacement in Gastrophryne carolinensis and G. olivacea (Anura, Microhylidae): A reexamination. Evolution, 46(4), 896–906.

    Article  Google Scholar 

  • McCallum, M. L., Brooks, C., Mason, R., & Trauth, S. (2011). Growth, reproduction, and life span in Blanchard’s Cricket Frog (Acris blanchardi) with notes on the growth of the Northern Cricket Frog (Acris crepitans). Herpetology Notes, 4, 1–11.

    Google Scholar 

  • McCauley, S. J., & Mabry, K. E. (2011). Climate change, body size, and phenotype dependent dispersal. Trends in Ecology & Evolution, 26(11), 554–555.

    Article  Google Scholar 

  • McClelland, B. E., Wilczynski, W., & Ryan, M. J. (1996). Correlations between call characteristics and morphology in male cricket frogs (Acris crepitans). Journal of Experimental Biology, 199(9), 1907–1919.

    CAS  PubMed  Google Scholar 

  • McDonald, J. (2009). Handbook of biological statistics. Baltimore, MD: Sparky House Publishing.

    Google Scholar 

  • Meiri, S., Simberloff, D., & Dayan, T. (2011). Community-wide character displacement in the presence of clines: A test of Holarctic weasel guilds. Journal of Animal Ecology, 80(4), 824–834.

    Article  PubMed  Google Scholar 

  • Micancin, J. P., & Mette, J. T. (2009). Acoustic and morphological identification of the sympatric cricket frogs Acris crepitans and A. gryllus and the disappearance of A. gryllus near the edge of its range. Zootaxa, 2076, 1–36.

    Google Scholar 

  • Micancin, J. P., & Mette, J. T. (2010). Acris crepitans (Northern Cricket Frog) and Acris gryllus (Southern Cricket Frog). interspecific agonism. Herpetological Review, 41(2), 192.

    Google Scholar 

  • Micancin, J. P., Toth, A. B., Anderson, R. B., & Mette, J. T. (2012). Sympatry and syntopy of the cricket frogs Acris crepitans and A. gryllus in southeastern Virginia, USA and decline of A. gryllus at the northern edge of its range. Herpetological Conservation and Biology, 7, 276–298.

    Google Scholar 

  • Mount, R. (1996). The reptiles and amphibians of Alabama. Tuscaloosa, AL: The University of Alabama Press.

    Google Scholar 

  • Nevo, E. (1973). Adaptive variation in size of cricket frogs. Ecology, 54(6), 1271–1281.

    Article  Google Scholar 

  • Nevo, E., & Capranica, R. (1985). Evolutionary origin of ethological reproductive isolation in cricket frogs, Acris. Evolutionary Biology, 19, 147–214.

    Google Scholar 

  • Noor, M. A. F. (1999). Reinforcement and other consequences of sympatry. Heredity, 83, 503–508.

    Article  PubMed  Google Scholar 

  • Perrill, S. A., & Lower, L. C. (1994). Advertisement call discrimination by female cricket frogs (Acris crepitans). Journal of Herpetology, 28(3), 399–400.

    Article  Google Scholar 

  • Pfennig, K. S., & Pfennig, D. W. (2009). Character displacement: Ecological and reproductive responses to a common evolutionary problem. The Quarterly Review of Biology, 84(3), 253–276.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfennig, D. W., & Pfennig, K. S. (2010). Character displacement and the origins of diversity. The American Naturalist, 176, S26–S44.

    Article  PubMed Central  PubMed  Google Scholar 

  • Richards-Zawacki, C. L., & Cummings, M. E. (2011). Intraspecific reproductive character displacement in a polymorphic poison dart frog, Dendrobates pumilio. Evolution, 65(1), 259–267.

    Article  PubMed  Google Scholar 

  • Rissler, L. J., & Smith, W. H. (2010). Mapping amphibian contact zones and phylogeographical break hotspots across the United States. Molecular Ecology, 19(24), 5404–5416.

    Article  PubMed  Google Scholar 

  • Rivas, L. (1964). A reinterpretation of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotopic”. Systematic Zoology, 13(1), 42–43.

    Article  Google Scholar 

  • Rundle, H. D., & Schluter, D. (2004). Natural selection and ecological speciation in sticklebacks. In U. Dieckmann, M. Doebeli, & J. Metz (Eds.), Adaptive speciation (pp. 192–209). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Ryan, M. J., & Keddy-Hector, A. (1992). Directional patterns of female mate choice and the role of sensory biases. American Naturalist, 139, S4–S35.

    Article  Google Scholar 

  • Ryan, M. J., & Wilczynski, W. (1988). Coevolution of sender and receiver: Effect on local mate preference in cricket frogs. Science, 240, 1786–1788.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, M. J., & Wilczynski, W. (1991). Evolution of intraspecific variation in the advertisement call of a cricket frog (Acris crepitans, Hylidae). Biological Journal of the Linnean Society, 44, 249–271.

    Article  Google Scholar 

  • SAS Institute Inc (2009). JMP 9 Modeling and Multivariate Methods. Cary, NC.

  • Schluter, D. (2000). Ecological character displacement in adaptive radiation. The American Naturalist, 156(4), S4–S16.

    Article  Google Scholar 

  • Servedio, M. R., & Noor, M. A. F. (2003). The role of reinforcement in speciation: Theory and data. Annual Review of Ecology Evolution and Systematics, 34, 339–364.

    Article  Google Scholar 

  • Smith, M. J., Osborne, W., & Hunter, D. (2003). Geographic variation in the advertisement call structure of Litoria verreauxii (Anura: Hylidae). Copeia, 4, 750–758.

    Article  Google Scholar 

  • Smith, S. A., Stephens, P. R., & Wiens, J. J. (2005). Replicate patterns of species richness, historical biogeography, and phylogeny in Holarctic treefrogs. Evolution, 59(11), 2433–2450.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, W. (1989a). Fighting, assessment, and frequency alteration in Blanchard’s cricket frog. Behavioral Ecology and Sociobiology, 25, 429–436.

    Article  Google Scholar 

  • Wagner, W. (1989b). Graded aggressive signals in Blanchard’s cricket frog: Vocal responses to opponent proximity and size. Animal Behaviour, 38, 1025–1038.

    Article  Google Scholar 

  • Wagner, W. (1989c). Social correlates of variation in male calling behavior in Blanchard’s cricket frog, Acris crepitans blanchardi. Ethology, 82, 27–45.

    Article  Google Scholar 

  • Wagner, W. E. (1992). Deceptive or honest signaling of fighting ability? A test of alternative hypotheses for the function of changes in call dominant frequency by male cricket frogs. Animal Behaviour, 44, 449–462.

    Article  Google Scholar 

  • Wells, K. D. (2007). The ecology and behavior of amphibians. Chicago, IL: University of Chicago Press.

    Book  Google Scholar 

  • Wilczynski, W., Keddy-Hector, A., & Ryan, M. J. (1992). Call patterns and basilar papilla tuning in cricket frogs. I. Differences among populations and between sexes. Brain, Behavior and Evolution, 39, 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Wollerman, L. (1999). Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata. Animal Behaviour, 57(3), 529–536.

    Google Scholar 

  • Wollerman, L., & Wiley, R. H. (2002). Background noise from a natural chorus alters female discrimination of male calls in a Neotropical frog. Animal Behaviour, 63(1), 15–22.

    Google Scholar 

Download references

Acknowledgments

We thank the NC Division of Parks and Recreation, the NC Wildlife Resources Commission, and the Triangle Land Conservancy for access to field sites, the staff of Merchants Millpond State Park for logistical support, and Charles Helms and Jeff Mette for assistance in the field. We thank Brad Lamphere, Alan Feduccia, Will Mackin, and two anonymous reviewers for comments on the manuscript. Funding was provided by the University of North Carolina, the Center for the Study of the American South, and the North Carolina Herpetological Society. All work was conducted under permits from the NC Department of Parks and Recreation and NC Wildlife Resources Commission and with approval from the University of North Carolina Institutional Animal Care and Use Committee (04-068 and 07-088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Micancin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Micancin, J.P., Wiley, R.H. Allometric Convergence, Acoustic Character Displacement, and Species Recognition in the Syntopic Cricket Frogs Acris crepitans and A. gryllus . Evol Biol 41, 425–438 (2014). https://doi.org/10.1007/s11692-014-9274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-014-9274-7

Keywords

Navigation