Skip to main content
Log in

Making Young from Old: How is Sex Designed to Help?

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Gametogenesis and syngamy are shown to incorporate, as key elements in their design, structures and processes that help to prevent age-related deterioration that accumulates in adult somas from being transferred directly to newly formed offspring. As such, in addition to producing new gene combinations, sex increases the separation of germ and soma. It follows as a central prediction that offspring of a species that has recently abandoned sex will manifest early in life some of the dysfunctions that formerly manifested only much later in life. These dysfunctions, which can include early onset of age-linked diseases such as cancer, should impede transitioning to non-sex, and therefore would help to account for sex’s maintenance. Evidence is reviewed, and found generally to support the hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann, M., Chao, L., Bergstrom, C., & Doebeli, M. (2007a). On the evolutionary origin of aging. Aging Cell, 6, 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Ackermann, M., Schauerte, A., Stearns, S., & Jenal, U. (2007b). Experimental aging in a bacterium. BMC Evolutionary Biology, 7, 126.

    Article  PubMed  Google Scholar 

  • Ackermann, M., Stearns, S., & Jenal, U. (2003). Senescence in a bacterium with asymmetric division. Science, 300, 1920.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal, A. (2006). Evolution of sex: Why do organisms shuffle their genotypes? Current Biology, 16, R696–R704.

    Article  CAS  PubMed  Google Scholar 

  • Bell, G. (1982). The masterpiece of nature. London: Croom-Helm, Berkeley: University of California Press.

    Google Scholar 

  • Bell, G. (1988). Sex and death in protozoa. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bengtsson, B. (2009). Sex and evolution: A very large-scale overview. In I. Schon, K. Martens, & P. van Dijk (Eds.), Lost sex: The evolutionary biology of parthenogenesis (pp. 1–19). New York: Springer.

    Chapter  Google Scholar 

  • Bernstein, H. (1977). Germ line recombination may be primarily a manifestation of DNA repair processes. Journal of Theoretical Biology, 69, 371–380.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein, C. (1979). Why are babies born young? Meiosis may prevent aging of the germ line. Perspectives in Biology and Medicine, 22, 539–544.

    CAS  PubMed  Google Scholar 

  • Bernstein, H., Byers, G., & Michod, R. (1981). Evolution of sexual reproduction: Importance of DNA repair, complementation, and variation. American Naturalist, 117, 537–549.

    Article  CAS  Google Scholar 

  • Chao, L. (2010). A model for damage load and its implications for the evolution of bacterial aging. PLoS Genetics, 6, e1001076.

    Article  PubMed  Google Scholar 

  • Corely, L. S., Blackenship, J. R., Moore, A. J., & Moore, P. J. (1999). Developmental constraints on the mode of reproduction in the facultatively parthenogenetic cockroach Nauphoeta cinerea. Evolution and Development, 1(2), 90–99.

    Article  Google Scholar 

  • Corry, G. Tanasijevic, B., Barry, E. Krueger, W., and Rasmussen, T. (2009) Birth defects research (part C) 87, 297–313.

  • de Visser, J., & Elena, S. (2007). The evolution of sex: Empirical insights into the roles of epistasis and drift. Nature Reviews Genetics, 8(2), 139–149.

    Article  PubMed  Google Scholar 

  • Feng, Q., Lu, S.J., Klimanskaya, I, Gomes, I., Kim, D., Chung, Y., Honig, G., Kim, K.S., Lanza, R. (2010). Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. WWW.StemCells.Com, 2/11/2010.

  • George, A., & Ritter, M. (1996). Thymic involution with ageing: Obsolescence or good housekeeping? Immunology Today, 17(6), 267–272.

    Article  CAS  PubMed  Google Scholar 

  • Giles, J., & Knight, J. (2003). Dolly’s death leaves researchers woolly on clone ageing issues. Nature, 421, 776.

    Article  CAS  PubMed  Google Scholar 

  • Haldane, J. B. S. (1949). Disease and evolution. Richmond Science, 19, 68.

    Google Scholar 

  • Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 12–45.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, W. D. (1980). Sex versus nonsex versus parasite. Oikos, 35, 282–290.

    Article  Google Scholar 

  • Hayashi, K., & Surani, M. (2009). Resetting the epigenome beyond pluripotency in the germline. Cell Stem Cell, 4(6), 493–498.

    Article  CAS  PubMed  Google Scholar 

  • Heethoff, M., Norton, R. Scheu, S. and Maraun, M. (2009). Parthenogenesis in oribatid mites (Ascari, Oribatida): evolution without sex. In 241–257.

  • Holliday, R. (1984). The biological significance of meiosis. Symposia of the Society for Experimental Biology, 38, 381–394.

    CAS  PubMed  Google Scholar 

  • Holliday, R. (1988). A possible role for meiotic recombination in germ line reprogramming and maintenance. In R. Michod & B. Levin (Eds.), The evolution of sex: An examination of current ideas (pp. 45–55). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Hurst, L., & Peck, J. (1996). Recent advances in understanding of the evolution and maintenance of sex. Trends in Ecology & Evolution, 11(2), 46–52.

    Article  CAS  Google Scholar 

  • Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270, 301–304.

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood, T. B. L. (1981). Repair and its evolution: Survival versus reproduction. In C. Townsend & P. Calow (Eds.), Physiological ecology: An evolutionary approach to resource use (pp. 165–189). London and Boston: Blackwell Scientific Publications.

    Google Scholar 

  • Kirkwood, T. B. L., & Cremer, T. (1982). Cytogerontology since 1881: Reappraisal of August weismann and a review of modern progress. Human Genetics, 60, 101–121.

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood, T. B. L., & Holliday, R. (1979). The evolution of ageing and longevity. Proceedings of the Royal Society of Medicine, B205, 531–546.

    Article  Google Scholar 

  • Kirkwood, T. B. L., & Rose, M. (1991). Evolution of senescence: Late survival sacrificed for reproduction. Philosophical Transactions Royal Society London B Biological Sciences, 332(1262), 15–24.

    Article  CAS  Google Scholar 

  • Kirschner, M., & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences, USA, 95, 8420–8427.

    Article  CAS  Google Scholar 

  • Kondrashov, A. (1993). Classification of hypotheses on the advantage of amphimixis. Journal of Heredity, 84, 372–387.

    CAS  PubMed  Google Scholar 

  • Kramer, M. G., Templeton, A. R., & Miller, K. G. (2002). Evolutionary implications of developmental instability in parthenogenetic Drosophila mercatorum. I. Comparison of several strains with different genotypes. Evolution and Development, 4(3), 223–233.

    Article  PubMed  Google Scholar 

  • Lees-Murdock, D. J., & Walsh, C. P. (2008). DNA methylation reprogramming in the germ line. Epigenetics, 3, 5–13.

    Article  PubMed  Google Scholar 

  • Lele, U., Baig, U., & Watve, M. (2011). Phenotypic plasticity and effects of selection on cell division symmetry in Escherichia coli. PLoS ONE, 6(1), e14516.

    Article  CAS  PubMed  Google Scholar 

  • Leroi, A., Bartke, A., Benedictis, G., Franceschi, C., Gartner, A., Gonos, E., et al. (2005). What evidence is there for the existence of individual genes with antagonistic pleiotropic effects? Mechanisms of Ageing and Development, 126(3), 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Livnat, A., Papadimitriou, C., Pippenger, N., & Feldman, M. (2010). Sex mixability, and modularity. Proceedings of the National Academy of Sciences USA, 107(4), 1452–1457.

    Article  CAS  Google Scholar 

  • Maynard Smith, J. (1971). What use is sex? Journal of Theoretical Biology, 30, 319–335.

    Article  Google Scholar 

  • Maynard Smith, J. (1978). The evolution of sex. Cambridge: Cambridge University Press.

    Google Scholar 

  • Medawar, P. (1952). An unsolved problem in biology. London: HK Lewis.

    Google Scholar 

  • Medvedev, Z. (1981). On the immortality of the germ line: Genetic and biochemical mechanisms. A review. Mechanisms of Ageing and Development, 17, 331–359.

    Article  CAS  PubMed  Google Scholar 

  • Meirmans, S. (2009). The evolution of the problem of sex. In I. Schon, K. Martens, & P. van Dijk (Eds.), The evolutionary biology of parthenogenesis (pp. 21–46). New York: Springer.

    Google Scholar 

  • Michod, R., & Levin, B. (1988). Introduction. In R. Michod & B. Levin (Eds.), The evolution of sex: An examination of current ideas (pp. 1–6). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Michod, R., & Nedelcu, A. (2003). On the reorganization of fitness during evolutionary transitions in individuality. Integrative and Comparative Biology, 43(1), 64–73.

    Article  PubMed  Google Scholar 

  • Misevic, D., Ofria, C., & Lenski, R. (2006). Sexual reproduction reshapes the genetic architecture of digital organisms. Proceedings of the Royal Society, London B, Biological Sciences, 273, 457–464.

    Article  Google Scholar 

  • Morgan, H., Santos, F., Green, K., Dean, W., & Reik, W. (2005). Epigenetic reprogramming in mammals. Human Molecular Genetics, 14(1), R47–R58.

    Article  CAS  PubMed  Google Scholar 

  • Muller, H. (1964). The relation of recombination to mutational advance. Mutation Research, 1, 2–9.

    Article  Google Scholar 

  • Neiman, M., & Koskella, B. (2009). Sex and the red queen. In I. Schon, K. Martens, & P. van Dijk (Eds.), The evolutionary biology of parthenogenesis (pp. 133–159). New York: Springer.

    Google Scholar 

  • Nesse, R., & Williams, G. (1994). Why we get sick. New York: Times Books, a division of Random House.

    Google Scholar 

  • Nystrom, T. (2003). Conditional senescence in bacteria: Death of the immortals. Molecular Microbiology, 48(1), 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Nystrom, T. (2011). Spatial protein quality control and the evolution of lineage-specific ageing. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 366, 71–75.

    Article  PubMed  Google Scholar 

  • Ogonuki, N., Inoue, K., Yamamoto, Y., Noguchi, Y., Tanemura, K., Suzuki, O., et al. (2002). Early death of mice cloned from somatic cells. Nature Genetics, 30, 253–254.

    Article  CAS  PubMed  Google Scholar 

  • Otto, S. (2009). The evolutionary enigma of sex. American Naturalist, 174(supplement), S1–S14.

    PubMed  Google Scholar 

  • Pal, C., & Hurst, L. (2003). Evidence for co-evolution of gene order and recombination rate. Nature Genetics, 33, 392–395.

    Article  CAS  PubMed  Google Scholar 

  • Perry, A., & Wakayama, T. (2002). Untimely ends and new beginnings in mouse cloning. Nature Genetics, 30, 243–244.

    Article  CAS  PubMed  Google Scholar 

  • Rang, C., Peng, A., & Chao, L. (2011). Temporal dynamics of bacterial aging and rejuvenation. Current Biology, 21, 1–4.

    Article  Google Scholar 

  • Rose, M. (1991). Evolutionary biology of aging. New York: Oxford University Press.

    Google Scholar 

  • Sakai, R., Tamashiro, K., Yamazaki, Y., & Yanagimachi., R. (2005). Cloning and assisted reproductive techniques: Influence on early development and adult phenotype. Birth Defects Research Part C: Embryo Today: Reviews, 75(2), 151–162.

    Article  CAS  Google Scholar 

  • Seger, J., & Hamilton, W. (1988). Parasites and sex. In R. E. Michod & B. R. Levin (Eds.), The evolution of sex: An examination of current ideas, Ch. 11 (pp. 176–193). Sunderland, MA: Sinauer Assoc.

    Google Scholar 

  • Shields, W. (1988). Sex and adaptation. In R. Michod & B. Levin (Eds.), The evolution of sex: An examination of current ideas (pp. 253–269). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Song, Y., Drossel, B., & Scheu, S. (2011). Tangled bank dismissed too early. Oikos, 120(11), 1601–1607.

    Article  Google Scholar 

  • Stewart, E., Madden, R., Paul, G., & Taddei, F. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3(2), e45.

    Article  PubMed  Google Scholar 

  • Turke, P. (1995). Microbial parasites versus developing T cells: An evolutionary “arms race” with implications for the timing of thymic involution and HIV pathogenesis. Thymus, 24, 29–40.

    CAS  Google Scholar 

  • Turke, P. (2008). Williams’s theory of the evolution of senescence: Still useful at fifty. The Quarterly Review of Biology, 83(3), 243–256.

    Article  PubMed  Google Scholar 

  • Turke, P. (2013). Altriciality, neoteny and pleiotropy. (Introduction to an excerpt, pp. 20–29, “How did humans evolve? Reflections on the uniquely unique species,” by R.D. Alexander, The University of Michigan Special Publication 1: 1–38, 1990.) To appear in: Foundations of Human Behavioral Evolution in the Works of R. D. Alexander. Bernard Crespi and Kyle Summers, eds., Oxford University of Press. (in press).

  • Valentine, J., Tiffney, B., & Sepkosky, J. (1991). Evolutionary dynamics of plants and animals. Palaios, 6, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Watve, M., Parab, S., Jogdand, P., & Keni, S. (2006). Aging may be a conditional strategic choice and not an inevitable outcome for bacteria. Proceedings of the National Academy of Sciences USA, 103(40), 14831–14835.

    Article  CAS  Google Scholar 

  • Weismann, A. (1893). The germ-plasm: A theory of heredity. London: Walter Scott.

    Google Scholar 

  • West, S., Lively, C., & Read, A. (1999). A pluralist approach to sex and recombination. Journal of Evolutionary Biology, 12, 1003–1012.

    Article  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford (UK): Oxford University Press.

    Google Scholar 

  • Williams, G. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398–411.

    Article  Google Scholar 

  • Williams, G. (1975). Sex and evolution. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Williams, G. C., & Nesse, R. (1991). The dawn of Darwinian medicine. Quarterly Review of Biology, 66(1), 1–21.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Laura Betzig, Bernie Crespi, Tom Kirkwood, and Steve Stearns very generously lent their expertise, and also gave much needed encouragement. Paul Sherman and Kyle Summers commented on an early draft that led to a complete re-write, and two anonymous reviewers offered especially thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Turke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turke, P.W. Making Young from Old: How is Sex Designed to Help?. Evol Biol 40, 471–479 (2013). https://doi.org/10.1007/s11692-013-9236-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-013-9236-5

Keywords

Navigation