Skip to main content
Log in

Adaptive Radiations in the Context of Macroevolutionary Theory: A Paleontological Perspective

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Adaptive radiations are often invoked anytime clades show significant bursts of diversification, but it is important to not simply assume that any radiating clade constitutes an adaptive radiation. In addition, several highly relevant macroevolutionary concepts including the Turnover Pulse Hypothesis, the Effect Hypothesis, exaptation, and species selection, have not been considered in the adaptive radiations literature. Here, these concepts are integrated into the theory of evolutionary radiations in general, and adaptive radiations in particular, and different types of evolutionary radiations are identified, including geographic radiations. Special emphasis is placed on considering the role that abiotic as opposed to biotic factors may play in motivating diversification during evolutionary radiations. Further, recent paleontological data suggesting that rather than organismal adaptation it may be principally abiotic factors, such as climate change and a taxon’s presence in a geographically complex region, that cause clades to diversify will be described. The fossil record, the source of the initial hallmark examples of adaptive radiation, now appears to show little concrete support for this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe F. R. (2010). The nature of evolutionary radiations with a special focus on Devonian calmoniid trilobites. Ph.D. Dissertation, University of Kansas.

  • Abe, F. R., & Lieberman, B. S. (2009). The nature of evolutionary radiations: A case study involving Devonian trilobites. Evolutionary Biology, 36, 225–234.

    Article  Google Scholar 

  • Abe, F. R., & Lieberman, B. S. (2012). Quantifying morphological change during an evolutionary radiation of Devonian trilobites. Paleobiology, 38, 292–307.

    Article  Google Scholar 

  • Benton, M. J. (1996). Testing the roles of competition and expansion in tetrapod evolution. Proceedings of the Royal Society of London, Biological Sciences, Series B, 263, 641–646.

    Article  Google Scholar 

  • Bowler, P. J. (1996). Life’s splendid drama. Chicago: University of Chicago Press.

    Google Scholar 

  • Brooks, D. R., & McLennan, D. A. (1991). Phylogeny, ecology, and behavior. Chicago: University of Chicago Press.

    Google Scholar 

  • Cadena, C. D., Ricklefs, R. E., Jiménez, I., & Bermingham, E. (2005). Ecology: Is speciation driven by species diversity? Nature, 438, E1–E2.

    Article  PubMed  CAS  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Press.

    Google Scholar 

  • Cracraft, J. (1982). A nonequilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Systematic Zoology, 31, 348–365.

    Article  Google Scholar 

  • Diamond, J. M., Gilpin, M. E., & Mayr, E. (1976). Species-distance relation for birds of the Solomon Archipelago, and the paradox of the great speciators. Proceedings of the National Academy of Sciences, USA, 73, 2160–2164.

    Article  CAS  Google Scholar 

  • Eldredge, N. (1979). Alternative approaches to evolutionary theory. Bulletin of Carnegie Museum of Natural History, 13, 7–19.

    Google Scholar 

  • Eldredge, N. (1985). Unfinished Synthesis. New York: Oxford University Press.

    Google Scholar 

  • Eldredge, N. (1989). Macroevolutionary dynamics. New York: McGraw-Hill.

    Google Scholar 

  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process: Method and theory in comparative biology. New York: Columbia University Press.

    Google Scholar 

  • Eldredge, N., & Gould, S. J. (1972). Punctuated equilibrium: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: W. H. Freeman.

    Google Scholar 

  • Emerson, B. C., & Kolm, N. (2005). Species diversity can drive speciation. Nature, 434, 1015–1017.

    Article  PubMed  CAS  Google Scholar 

  • Futuyma, D. J. (1998). Evolutionary biology (3rd ed.). Sunderland, MA: Sinauer.

    Google Scholar 

  • Gittenberger, E. (1991). What about non-adaptive radiation? Biological Journal of the Linnean Society, 43, 263–272.

    Article  Google Scholar 

  • Givnish, T. J. (1997). Adaptive radiation and molecular systematics: Issues and approaches. In T. J. Givnish & K. J. Sytsma (Eds.), Molecular evolution and adaptive radiation (pp. 1–54). Cambridge: Cambridge University Press.

    Google Scholar 

  • Glor, R. E., Gifford, M. E., Larson, A., Losos, J. B., Rodriguez-Schettino, L., Lara, A. R. C., et al. (2004). Partial island submergence and speciation in an adaptive radiation: a multilocus analysis of the Cuban green anoles. Proceedings of the Royal Society, Biological Sciences, Series B, 271(1554), 2257–2265.

    Article  Google Scholar 

  • Gould, S. J. (1990). Speciation and sorting as the source of evolutionary trends, or ‘things are seldom what they seem’. In K. J. McNamara (Ed.), Evolutionary trends (pp. 3–27). London: Belhaven Press.

    Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London Series B, 205(1161), 581–598.

    Article  CAS  Google Scholar 

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation—A missing term in the science of form. Paleobiology, 8, 4–15.

    Google Scholar 

  • Grant, P. R., & Grant, B. R. (2008). How and why species multiply: The radiation of Darwin’s finches. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., et al. (2010). Early bursts of body size and shape evolution are rare in comparative data. Evolution, 64, 2385–2396.

    PubMed  Google Scholar 

  • Harmon, L. J., Schulte, J. A., I. I., Larson, A., & Losos, J. B. (2003). Tempo and mode of evolutionary radiation in iguanian lizards. Science, 301(5635), 961–964.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, J. (1942). Evolution: The modern synthesis. London: Allen & Unwin.

    Google Scholar 

  • Jablonski, D. (1986). Larval ecology and macroevolution of marine invertebrates. Bulletin of Marine Science, 39, 565–587.

    Google Scholar 

  • Jablonski, D. (2007). Scale and hierarchy in macroevolution. Palaeontology, 50, 87–109.

    Article  Google Scholar 

  • Kocher, T. D. (2004). Adaptive evolution and explosive speciation: The cichlid model. Nature Genetics, 5, 288–298.

    Article  CAS  Google Scholar 

  • Lieberman, B. S. (1993). Systematics and biogeography of the ‘‘Metacryphaeus Group’’ Calmoniidae (Trilobita, Devonian) with comments on adaptive radiations and the geological history of the Malvinokaffric realm. Journal of Paleontology, 67, 549–570.

    Google Scholar 

  • Lieberman B. S. (1999). Turnover pulse in trilobites during the Acadian Orogeny. In Proceedings of the Appalachian Biogeography Symposium. Virginia Museum of Natural History Special Publications Number 7:99–108.

  • Lieberman, B. S. (2000). Paleobiogeography. New York: Kluwer Academic.

    Book  Google Scholar 

  • Lieberman, B. S. (2001). A test of whether rates of speciation were unusually high during the Cambrian radiation. Proceedings of the Royal Society, Biological Sciences, Series B, 268, 1707–1714.

    Article  CAS  Google Scholar 

  • Lieberman, B. S. (2003). Taking the pulse of the Cambrian radiation. Journal of Integrative and Comparative Biology, 43, 229–237.

    Article  Google Scholar 

  • Lieberman, B. S., Allmon, W. D., & Eldredge, N. (1993). Levels of selection and macroevolutionary patterns in the turritellid gastropods. Paleobiology, 19, 205–215.

    Google Scholar 

  • Lieberman, B. S., Edgecombe, G. D., & Eldredge, N. (1991). Systematics and biogeography of the ‘‘Malvinella Group’’, Calmoniidae (Trilobita, Devonian). Journal of Paleontology, 65, 824–843.

    Google Scholar 

  • Lieberman, B. S., & Vrba, E. S. (1995). Hierarchy theory, selection, and sorting. BioScience, 45(6), 394–399.

    Article  Google Scholar 

  • Lieberman, B. S., & Vrba, E. S. (2005). Stephen Jay Gould on species selection: 30 years of insight. Paleobiology, 31(2, supplement), 113–121.

    Article  Google Scholar 

  • Losos, J. B. (2009). Lizards in an evolutionary tree: Ecology and adaptive radiation of anoles. Berkeley, CA: University of California Press.

    Google Scholar 

  • Losos, J. B., & Glor, R. E. (2003). Phylogenetic comparative methods and the geography of speciation. Trends in Ecology & Evolution, 18, 220–227.

    Article  Google Scholar 

  • Losos, J. B., & Miles, D. B. (2002). Testing the hypothesis that a clade has adaptively radiated: Iguanid lizard clades as a case study. American Naturalist, 160, 147–157.

    Article  PubMed  Google Scholar 

  • Lovette, I. J., Bermingham, E., & Ricklefs, R. E. (2001). Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proceedings of the Royal Society, Biological Sciences, Series B, 269, 37–42.

    Article  Google Scholar 

  • Maguire, K. C., & Stigall, A. L. (2008). Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology, 267, 175–184.

    Article  Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  • Morrone, J. J. (2008). Evolutionary biogeography: An integrative approach with case studies. New York: Columbia University Press.

    Google Scholar 

  • Moyle, R. G., Filardi, C. E., Smith, C. F., & Diamond, J. (2009). Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proceedings of the National Academy of Sciences, USA, 106(6), 1863–1868.

    Article  CAS  Google Scholar 

  • Myers, C., & Lieberman, B. S. (2011). Sharks that pass in the night: Using GIS to investigate competition in the Cretaceous Western Interior Seaway. Proceedings of the Royal Society, Biological Sciences, Series B, 278(1706), 681–689.

    Article  Google Scholar 

  • Nee, S. (2006). Birth-death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 37, 1–17.

    Article  Google Scholar 

  • Olson, M. E., & Arroyo-Santos, A. (2009). Thinking in continua: Beyond the ‘adaptive radiation’ metaphor. Bioessays, 31(12), 1337–1346.

    Article  PubMed  Google Scholar 

  • Osborn, H. (1902). The law of adaptive radiation. American Naturalist, 36, 353–363.

    Article  Google Scholar 

  • Rabosky, D., & McCune, A. R. (2010). Reinventing species selection with molecular phylogenies. Trends in Ecology & Evolution, 25, 68–74.

    Article  Google Scholar 

  • Ricklefs, R. E., & Miles, D. B. (1994). Ecological and evolutionary inferences from morphology: An ecological perspective. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology: Integrative organismal biology (pp. 13–41). Chicago: University of Chicago Press.

    Google Scholar 

  • Rode, A. L., & Lieberman, B. S. (2005). Integrating biogeography and evolution using phylogenetics and PaleoGIS: A case study involving Devonian crustaceans. Journal of Paleontology, 79, 267–276.

    Article  Google Scholar 

  • Rundell, R. J., & Price, T. D. (2009). Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology & Evolution, 24(7), 394–399.

    Article  Google Scholar 

  • Sanderson, M., & Donoghue, M. (1996). Reconstructing shifts in diversification rates on phylogenetic trees. Trends in Ecology & Evolution, 11, 15–20.

    Article  CAS  Google Scholar 

  • Savolainen, V., Anstett, M.-C., Lexer, C., Hutton, I., Clarkson, J. J., Norup, M. V., et al. (2006). Sympatric speciation in palms on an oceanic island. Nature, 44, 210–213.

    Article  Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.

    Google Scholar 

  • Seehausen, O. (2006). African cichlid fish: A model system in adaptive radiation research. Proceedings of the Royal Society, Biological Sciences, Series B, 273(1597), 1987–1998.

    Article  Google Scholar 

  • Sibley, C. G., & Ahlquist, J. E. (1990). Phylogeny and classification of birds. New Haven, CT: Yale University Press.

    Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Simpson, G. G. (1953). The major features of evolution. New York: Columbia University Press.

    Google Scholar 

  • Stanley, S. M. (1979). Macroevolution, pattern and process. San Francisco: W. H. Freeman.

    Google Scholar 

  • Stigall, A. L. (2010). Speciation decline during the Late Devonian biodiversity crisis related to species invasions. PLoS One, 5(12), e15584.

    Article  PubMed  CAS  Google Scholar 

  • Theiler, G. R., Gardenal, C. N., & Blanco, A. (1999). Patterns of evolution in Graomys griseoflavus (Rodentia, Muridae). IV. A case of rapid speciation. Journal of Evolutionary Biology, 12, 970–979.

    Article  Google Scholar 

  • Vogler, A., & Goldstein, P. (1997). Adaptive radiation and taxon cycles in North American tiger beetles: A cladistic perspective. In T. J. Givnish & K. J. Sytsma (Eds.), Molecular evolution and adaptive radiation (pp. 353–373). Cambridge: Cambridge University Press.

    Google Scholar 

  • Vrba, E. S. (1984). What is species selection? Systematic Zoology, 33, 318–328.

    Article  Google Scholar 

  • Vrba, E. S. (1985). Environment and evolution: Alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81, 229–236.

    Google Scholar 

  • Vrba, E. S. (1987). Ecology in relation to speciation rates: Some case histories of Miocene-Recent mammal clades. Evolutionary Ecology, 1, 283–300.

    Article  Google Scholar 

  • Vrba, E. S. (1989). Levels of selection and sorting with special reference to the species level. Oxford Surveys in Evolutionary Biology, 6, 111–168.

    Google Scholar 

  • Vrba, E. S. (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy, 73, 1–28.

    Article  Google Scholar 

  • Vrba, E. S., & Eldredge, N. (1984). Individuals, hierarchies and processes: Towards a more complete evolutionary theory. Paleobiology, 10, 146–171.

    Google Scholar 

  • Vrba, E. S., & Gould, S. J. (1986). The hierarchical expansion of sorting and selection: Sorting and selection cannot be equated. Paleobiology, 12, 217–228.

    Google Scholar 

  • Whittaker, R. J., Ladle, R. J., Araújo, M. B., Fernández-Palacios, J. M., Delgado, J. D., & Arévalo, J. R. (2007). The island immaturity—Speciation pulse model of island evolution: An alternative to the “diversity begets diversity” model. Ecography, 30, 321–327.

    Article  Google Scholar 

  • Wiley, E. O. (1981). Phylogenetics. New York: Wiley.

    Google Scholar 

  • Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Wiley, E. O., & Mayden, R. L. (1985). Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Annals of the Missouri Botanical Garden, 72, 596–635.

    Article  Google Scholar 

  • Yang, W., Cerling, T. E., & MacFadden, B. J. (1994). Fossil horses and carbon isotopes: New evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 279–2669.

    Google Scholar 

  • Yoder, J., Clancey, E., Des Roches, S., Eastman, J., Gentry, L., Godsoe, W., et al. (2010). Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology, 23, 1581–1596.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Maria Pia Miglietta, Francesco Santini, and Anuschka Faucci for inviting me to participate in this special issue of the journal. Thanks to Francine Abe and Ed Wiley for discussions on the subject of adaptive radiations, and to Rob Moyle, Katherine Willmore, and two anonymous reviewers for comments on an earlier version of this paper. This research was supported by NSF-DEB-0716162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce S. Lieberman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieberman, B.S. Adaptive Radiations in the Context of Macroevolutionary Theory: A Paleontological Perspective. Evol Biol 39, 181–191 (2012). https://doi.org/10.1007/s11692-012-9165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9165-8

Keywords

Navigation