Skip to main content
Log in

Feathers with Ocular Architecture: Implications for Functional and Evolutionary Similarities of Visual Signals and Receptors

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Studies of visual receptors typically assume that only functionally similar structures are relevant to the evolution of complex eyes. This approach ignores growing evidence that different functional classes of organs often share structural and developmental patterns that pertain to biological sameness (deep homology). However, the potential relevance of non-receptor structures to eye evolution remains largely unexplored. An “ocular” feather color mechanism is described whose structural and optical features resemble those of chambered, image-forming eyes to a remarkable degree. These similarities include a laterally expanded, domed light receiving surface similar to that of an eye, an encapsulated spongy tissue mass whose coherent light scattering properties in the human-visible (destructive) and ultraviolet (constructive) wavelength ranges resemble those of cornea and lens, intervening spaces such as those with humors, and a laminar pigmented shelf whose structure and optics resemble a mirrored tapetum lucidum found behind many retinas. Fourier analysis and optical principles indicate that ocular structures adhere to the same light-handling properties regardless of higher function (receptor or signal). The extent to which chambered eyes and ocular feathers have evolved independently is surprisingly equivocal. On the one hand, broad differences in the location, composition, and development of chambered eyes and ocular feather signals suggest convergent evolution on an ocular organization. However, some level of evolutionary parallelism (generative homology) between chambered eyes and ocular feathers is implicated by similarities in constructional materials, tissue development, and signal transduction cascades. Structural, optical, and developmental similarities also occur between more primitive eyes and the colored dermal papillae responsible for avian skin ornamentation. Functional constraints on light-handling requirements, coupled with developmental constraints in high-stress environments on the body surface, may enhance the similar evolutionary outcomes in the different functional setting. Regardless of the mechanistic details, repeated evolution of eye-like structures in different functional settings reveals a biological potential to produce such organs that is much greater than would be inferred from a survey of receptor structures alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akam, M. (1995). Hox genes and evolution of diverse body plans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 349(1329), 313–319. doi:10.1098/rstb.1995.0119.

    PubMed  CAS  Google Scholar 

  • Albertson, R. C., & Kocher, T. D. (2006). Genetic and developmental basis of cichlid trophic diversity. Heredity, 97(3), 211–221. doi:10.1038/sj.hdy.6800864.

    PubMed  CAS  Google Scholar 

  • Ambach, W., Blumthaler, M., Schöpf, T., Ambach, E., Katzgraber, F., Daxecker, F., et al. (1994). Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation. Documenta Ophthalmologica, 88(2), 1573–2622. doi:10.1007/BF01204614.

    Google Scholar 

  • Andersson, S. (1999). Morphology of UV reflectance in a whistling-thrush: implications for the study of structural colour signalling in birds. Journal of Avian Biology, 30(2), 193–204. doi:10.2307/3677129.

    Google Scholar 

  • Andersson, S., & Prager, M. (2006). Quantifying colors. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration (Vol. I, pp. 41–89). Cambridge: Harvard University Press.

    Google Scholar 

  • Arendt, D., Tessmar-Raible, K., Snyman, H., Dorresteijn, A. W., & Wittbrodt, J. (2004). Ciliary photoreceptors with vertebrate-type opsins in an invertebrate brain. Science, 306(5697), 869–871. doi:10.1126/science.1099955.

    PubMed  CAS  Google Scholar 

  • Auber, L. (1957). The structures producing “non-iridescent” blue colour in bird feathers. Proceedings of the Zoological Society of London, 129, 455–486.

    Google Scholar 

  • Bailey, T. J., El-Hodiri, H., Zhand, L., Shah, R., Maethers, P. M., & Jamrich, M. (2004). Regulation of vertebrate eye develoment by Rx genes. The International Journal of Developmental Biology, 48(8–9), 761–770. doi:10.1387/ijdb.041878tb.

    PubMed  CAS  Google Scholar 

  • Barishak, R. Y., & Ofri, R. (2007). Embryogenetics: gene control of the embryogenesis of the eye. Veterinary Ophthalmology, 10(3), 133–136. doi:10.1111/j.1463-5224.2007.00535.x.

    PubMed  CAS  Google Scholar 

  • Behe, M. (1996). Darwin’s black box: The biochemical challenge to evolution. New York: Free Press.

    Google Scholar 

  • Beitch, I. (1970). The induction of keratinization in the corneal epithelium. A comparison of “dry” and vitamin A-deficient eyes. Investigative Ophthalmology & Visual Science, 9(11), 827–843.

    CAS  Google Scholar 

  • Benedek, G. B. (1971). Theory of the transparency of the eye. Applied Optics, 10(3), 459–473. doi:10.1364/AO.10.000459.

    Google Scholar 

  • Bleiweiss, R. (1999). Joint effects of feeding and breeding behavior on trophic dimorphism in hummingbirds. Proceedings of the Royal Society of London. Series B. Biological Sciences, 266(1437), 2491–2497. doi:10.1098/rspb.1999.0951.

    Google Scholar 

  • Bleiweiss, R. (2004). Ultraviolet plumage reflectance distinguishes sibling bird species. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 16561–16564. doi:10.1073/pnas.0406386101.

    PubMed  CAS  Google Scholar 

  • Bleiweiss, R. (2005). Variation in ultraviolet reflectance by carotenoid-bearing feathers of tanagers (Thraupini, Emberizinae, Passeriformes). Biological Journal of the Linnean Society. Linnean Society of London, 84(2), 243–257. doi:10.1111/j.1095-8312.2005.00427.x.

    Google Scholar 

  • Bleiweiss, R. (2007). On the ecological basis of interspecific homoplasy in carotenoid-bearing signals. Evolution; International Journal of Organic Evolution, 61(12), 2861–2878. doi:10.1111/j.1558-5646.2007.00217.x.

    PubMed  Google Scholar 

  • Bloemendal, H. (1991). Disorganization of membranes and abnormal intermediate filament assembly lead to cataract. Investigative Ophthalmology & Visual Science, 32(3), 445–455.

    CAS  Google Scholar 

  • Boughman, J. W. (2001). Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature, 411(6840), 944–948. doi:10.1038/35082064.

    PubMed  CAS  Google Scholar 

  • Bowmaker, J. K., Kovach, J. K., Whitmore, A. V., & Loew, E. R. (1993). Visual pigments in genetically manipulated and carotenoid deprived quail: A microspectrophotometric study. Vision Research, 33(5–6), 571–578. doi:10.1016/0042-6989(93)90180-5.

    PubMed  CAS  Google Scholar 

  • Bragulla, H., & Hirschberg, R. M. (2003). Horse hooves and bird feathers: Two model systems for studying the structure and development of highly adaptive integumentary accessory organs—the role of the dermo-epidermal interface for the micro-architecture of complex epidermal structures. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 298B(1), 140–151. doi:10.1002/jez.b.31.

    Google Scholar 

  • Brink, D. J., & van der Berg, N. G. (2004). Structural colors from the feathers of the bird Bostrychia hagadash. Journal of Physics D: Applied Physics, 37(5), 813–818. doi:10.1088/0022-3727/37/5/025.

    CAS  Google Scholar 

  • Brooks, R., & Endler, J. A. (2001). Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). Evolution; International Journal of Organic Evolution, 55(5), 1002–1015. doi:10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2.

    PubMed  CAS  Google Scholar 

  • Burke, A. C., & Molinar, E. R. (2002). Starting from fins: Parallelism in the evolution of limbs and genitalia. Part two: Fins to limbs. Evolution & Development, 4(5), 375–377. doi:10.1046/j.1525-142X.2002.02024.x.

    Google Scholar 

  • Burkhardt, D. (1989). UV vision: A bird’s eye view of feathers. Journal of Comparative Physiology. A, Sensory, Neural and Behavioral Physiology, 164(6), 787–796. doi:10.1007/BF00616750.

    Google Scholar 

  • Burns, K. J. (1997). Molecular systematics of tanagers (Thraupinae): Evolution and biogeography of a diverse radiation of Neotropical birds. Molecular Phylogenetics and Evolution, 8(3), 334–348. doi:10.1006/mpev.1997.0430.

    PubMed  CAS  Google Scholar 

  • Burns, K. J., & Naoki, K. (2004). Molecular phylogenetics and biogeography of Neotropical tanagers in the genus Tangara. Molecular Phylogenetics and Evolution, 32(3), 838–854. doi:10.1016/j.ympev.2004.02.013.

    PubMed  CAS  Google Scholar 

  • Butler, A. B., & Saidel, W. M. (2000). Defining sameness: Historical, biological, and generative homology. BioEssays, 22(9), 846–853. doi:10.1002/1521-1878(200009)22:9<846::AID-BIES10>3.0.CO;2-R.

    PubMed  CAS  Google Scholar 

  • Carroll, S. B. (2006). The making of the fittest. New York: W. W. Norton.

    Google Scholar 

  • Chuong, C. M., Chodankar, R., Widelitz, R. B., & Jiang, T.-X. (2000). Evo-devo of feathers and scales: Building complex epithelial appendages. Current Opinion in Genetics & Development, 10(4), 449–456. doi:10.1016/S0959-437X(00)00111-8.

    CAS  Google Scholar 

  • Colosimo, O., Hosemann, K. E., Balabhadra, S., Villarreal, G., Jr, Dickson, M., Grimwood, J., et al. (2005). Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science, 307(5717), 1928–1933. doi:10.1126/science.1107239.

    PubMed  CAS  Google Scholar 

  • Costa, A. M. A., Peyrol, S., Pôrto, L. C., Comparin, J.-P., Foyatier, J.-L., & Desmoulière, A. (1999). Mechanical forces induce scar remodeling. American Journal of Pathology, 155(5), 1671–1679.

    PubMed  CAS  Google Scholar 

  • Cursiefen, C., Chen, L., Hamrah, P., Pytowski, B., Persaud, K., Wu, Y., et al. (2006). High constitutive expression of VEGFR-3 by corneal epithelium maintains corneal avascularity by serving as decoy receptor. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11405–11410.

    PubMed  CAS  Google Scholar 

  • Cuthill, I. C., Partridge, J., Bennett, A. T. D., Church, S. C., Hart, N. S., & Hunt, S. (2000). Ultraviolet vision in birds. Advances in the Study of Behavior, 29, 159–214. doi:10.1016/S0065-3454(08)60105-9.

    Google Scholar 

  • Darwin, C. (1859). The origin of species by means of natural selection, or, the preservation of favored races in the struggle for life. London: John Murray.

  • Darwin, C. R. (1871). The descent of man and selection in relation to sex. London: John Murray.

    Google Scholar 

  • Dawkins, R. (1996). Climbing mount improbable. New York: W. W. Norton.

    Google Scholar 

  • Denton, M. J. (1998). Nature’s destiny. New York: The Free Press.

    Google Scholar 

  • Dyke, J. (1971). Structure and colour-production of the blue barbs of Aganorpis roseicollis and Cotinga maynana. Zeitschrift fur Zellforschung, 115, 17–29. doi:10.1007/BF00330211.

    Google Scholar 

  • Eames, B. F., & Schneider, R. A. (2005). Quail-chick chimeras reveal spatiotemporal plasticity in molecular and histogenic programs of cranial feather development. Development, 132(7), 1499–1509. doi:10.1242/dev.01719.

    PubMed  CAS  Google Scholar 

  • Fernald, R. (2006). Casting a genetic light on the evolution of eyes. Science, 313(5795), 914–918. doi:10.1126/science.1127889.

    Google Scholar 

  • Finger, E. (1995). Visible and UV coloration in birds: Mie scattering as the basis of color in many birds feathers. Die Naturwissenschaften, 82(12), 570–573. doi:10.1007/BF01140249.

    CAS  Google Scholar 

  • Finger, E., & Burkhardt, D. (1992). Avian plumage colours. Origin of UV reflection in a black parrot. Die Naturwissenschaften, 79(4), 187–188. doi:10.1007/BF01134442.

    Google Scholar 

  • Fliniaux, I., Viallet, J. P., & Dhouailly, D. (2004). Signaling dynamics of feather tract formation from the chick somatopleure. Development, 131(16), 3955–3966. doi:10.1242/dev.01263.

    PubMed  CAS  Google Scholar 

  • Fox, D. L. (1953). Animal biochromes and structural colours. London: Sidgwick and Jackson.

    Google Scholar 

  • Fuhrmann, S., Levine, E. M., & Reh, T. A. (2000). Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development, 127(21), 4599–4609.

    PubMed  CAS  Google Scholar 

  • Gehring, W. J. (2005). New perspectives on eye development and the evolution of eyes of photoreceptors. The Journal of Heredity, 96(3), 171–184. doi:10.1093/jhered/esi027.

    PubMed  CAS  Google Scholar 

  • Gehring, W. J., & Ikeo, K. (1999). Pax-6: Mastering eye morphogenesis and eye evolution. Trends in Genetics, 15(9), 371–377. doi:10.1016/S0168-9525(99)01776-X.

    PubMed  CAS  Google Scholar 

  • Grothe, B., Carr, C. E., Casseday, J. H., Fritzsch, B., & Köppl, C. (2005). The evolution of central pathways and their neural processing patterns. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Springer handbook of auditory research—Evolution of the vertebrate auditory system (pp. 289–359). New York: Springer-Verlag.

    Google Scholar 

  • Halder, G., Callaerts, P., & Gehring, W. J. (1995). New perspectives on eye evolution. Current Opinion in Genetics & Development, 5(5), 602–609. doi:10.1016/0959-437X(95)80029-8.

    CAS  Google Scholar 

  • Harris, W. A. (1997). Pax-6: Where to be conserved is not conservative. Proceedings of the National Academy of Sciences of the United States of America, 94(6), 2098–2100. doi:10.1073/pnas.94.6.2098.

    PubMed  CAS  Google Scholar 

  • Harris, M. P., Fallon, J. F., & Prum, R. O. (2002). Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. The Journal of Experimental Zoology, 294(2), 160–176. doi:10.1002/jez.10157. Molecular Development and Evolution.

    PubMed  CAS  Google Scholar 

  • Harris, M. P., Williamson, S., Fallon, J. F., Meinhardt, H., & Prum, R. O. (2005). Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11734–11739. doi:10.1073/pnas.0500781102.

    PubMed  CAS  Google Scholar 

  • Hart, N. S., Lisney, T. J., & Collin, S. P. (2006). Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity. The Journal of Experimental Biology, 209(23), 4776–4787. doi:10.1242/jeb.02568.

    PubMed  Google Scholar 

  • Hart, N. S., Partridge, J. C., Bennett, A. T. D., & Cuthill, I. C. (2000). Visual pigments, cone oil droplets and ocular media in four species of estrildid finch. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 186(7–8), 681–694. doi:10.1007/s003590000121.

    PubMed  CAS  Google Scholar 

  • Hertling, D., & Kessler, R. M. (2006). Management of common musculoskeletal disorders, physical therapy principles (p. 960). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Isler, M. L., & Isler, P. R. (1999). The tanagers. Natural history, distribution, and identification. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Jacob, F. (1977). Evolution and tinkering. Science, 196(4295), 1161–1166.

    PubMed  CAS  Google Scholar 

  • Johnsen, S. (2001). Hidden in plain sight: The ecology and physiology of organismal transparency. Biological Bulletin, 201(3), 301–318.

    PubMed  CAS  Google Scholar 

  • Karamichos, D., Lakshman, N., & Petroll, W. M. (2007). Regulation of corneal fibroblast morphology and collagen reorganization by extracellular matrix mechanical properties. Investigative Ophthalmology & Visual Science, 48(11), 5030–5037. doi:10.1167/iovs.07-0443.

    Google Scholar 

  • Kong, H. J., Choi, J., Park, Y. H., Shin, J. S., Lee, S. K., Lee, D. W., et al. (2005). Omnidirectional plane beam generation by a hollow tube prism. The Review of Scientific Instruments, 76(026114), 1–3.

    Google Scholar 

  • Kozmic, Z. (2005). Pax genes in eye development and evolution. Current Opinion in Genetics & Development, 15(4), 1–9.

    Google Scholar 

  • Land, M. F. (1966). A multilayer interference reflector in the eye of the scallop, Pecten maximus. The Journal of Experimental Biology, 45(3), 433–447.

    Google Scholar 

  • Land, M. F. (2000). Eyes with mirror optics. Journal of Optics. A, Pure and Applied Optics, 2(6), R44–R50. doi:10.1088/1464-4258/2/6/204.

    Google Scholar 

  • Lazzaro, D. R., Lin, K., & Stevens, J. A. (1998). Corneal findings in hemochromatosis. Archives of Ophthalmology, 116(11), 1531–1533.

    PubMed  CAS  Google Scholar 

  • Lucas, A. M., & Stettenheim, P. R. (1972). Avian anatomy—integument. Washington, DC: U. S. Department of Agriculture Handbook.

    Google Scholar 

  • Maynard Smith, J. M., & Harper, D. (2003). Animal signals. Oxford series in ecology and evolution. Oxford: Oxford University Press.

  • McGraw, K. J. (2006). Mechanisms of uncommon colors: Pterins, porphyrins, and psittacofulvins. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration (Vol. I, pp. 354–398). Cambridge: Harvard University Press.

    Google Scholar 

  • Meulemans, D., & Bronner-Fraser, M. (2007). The Amphioxus SoxB Family: Implications for the evolution of vertebrate placodes. International Journal of Biological Sciences, 3(6), 356–364.

    PubMed  CAS  Google Scholar 

  • Murali, D., Yoshikawa, S., Corrigan, R. R., Plas, D. J., Crair, M. C., Oliver, G., et al. (2005). Distinct developmental programs require different levels of Bmp signaling during mouse retinal development. Development, 132(5), 913–923. doi:10.1242/dev.01673.

    PubMed  CAS  Google Scholar 

  • Nilsson, D. E., & Pelger, S. (1994). A pessimistic estimate of the time required for an eye to evolve. Proceedings of the Royal Society of London. Series B. Biological Sciences, 256(1345), 53–58. doi:10.1098/rspb.1994.0048.

    CAS  Google Scholar 

  • Oakley, T. H. (2004). The eye as a replicating and diverging, modular developmental unit. Trends in Ecology & Evolution, 18(12), 623–627. doi:10.1016/j.tree.2003.09.005.

    Google Scholar 

  • Ogura, A., Ikeo, K., & Gojobori, T. (2004). Comparative analysis of gene expression for convergent evolution of camera eye between octopus and human. Genome Research, 14(8), 1555–1561. doi:10.1101/gr.2268104.

    PubMed  CAS  Google Scholar 

  • Ollivier, F. J., Samuelson, D. A., Brooks, D. E., Lewis, P. A., Kallberg, M. E., & Komáromy, A. M. (2004). Comparative morphology of the tapetum lucidum (among selected species). Veterinary Ophthalmology, 7(1), 11–22. doi:10.1111/j.1463-5224.2004.00318.x.

    PubMed  CAS  Google Scholar 

  • Osorio, D., & Ham, A. D. (2002). Spectral reflectance and directional properties of structural coloration in bird plumage. The Journal of Experimental Biology, 205(14), 2017–2027.

    PubMed  CAS  Google Scholar 

  • Packard, A. (1972). Cephalopods and fish: The limits of convergence. Biological Reviews, 47(2), 241–307.

    CAS  Google Scholar 

  • Panganiban, G., Irvine, S. M., Lowe, C., Roehl, H., Corley, L. S., Sherbon, B., et al. (1997). The origin and evolution of animal appendages. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5162–5166. doi:10.1073/pnas.94.10.5162.

    PubMed  CAS  Google Scholar 

  • Pichaud, F., Treisman, J., & Desplan, C. (2001). Reinventing a common strategy for patterning the eye. Cell, 105(1), 9–12. doi:10.1016/S0092-8674(01)00292-6.

    PubMed  CAS  Google Scholar 

  • Pispa, J., & Thesleff, I. (2003). Mechanisms of ectodermal organogenesis. Developmental Biology, 262(2), 195–205. doi:10.1016/S0012-1606(03)00325-7.

    PubMed  CAS  Google Scholar 

  • Prum, R. O. (2006). Anatomy, physics, and evolution of structural colors. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration (Vol. I, pp. 295–353). Cambridge: Harvard University Press.

    Google Scholar 

  • Prum, R. O., Andersson, S., & Torres, R. (2003). Coherent scattering of ultraviolet light by avian feather barbs. The Auk, 120(1), 163–170. doi:10.1642/0004-8038(2003)120[0163:CSOULB]2.0.CO;2.

    Google Scholar 

  • Prum, R. O., Cole, J., & Torres, R. H. (2004). Blue integumentary structural colors of dragonflies (Odonata) are not produced by incoherent Tyndall scattering. The Journal of Experimental Biology, 207(22), 3999–4009. doi:10.1242/jeb.01240.

    PubMed  Google Scholar 

  • Prum, R. O., & Torres, R. H. (2002). A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures. Integrative and Comparative Biology, 43(4), 591–602. doi:10.1093/icb/43.4.591.

    Google Scholar 

  • Prum, R. O., & Torres, R. H. (2003). Structural colouration of avian skin: Convergent evolution of coherently scattering dermal collagen arrays. The Journal of Experimental Biology, 206(14), 2409–2429. doi:10.1242/jeb.00431.

    PubMed  Google Scholar 

  • Prum, R. O., & Torres, R. H. (2004). Structural colouration in mammalian skin: Convergent evolution of coherently scattering dermal collagen arrays. The Journal of Experimental Biology, 207(12), 2157–2172. doi:10.1242/jeb.00989.

    PubMed  Google Scholar 

  • Prum, R. O., Torres, R. H., Williamson, S., & Dyck, J. (1998). Coherent light scattering by blue feather barbs. Nature, 396(6706), 28–29. doi:10.1038/23838.

    CAS  Google Scholar 

  • Prum, R. O., Torres, R. H., Williamson, S., & Dyck, J. (1999). Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proceedings of the Royal Society of London. Series B. Biological Sciences, 266(1414), 13–22.

    CAS  Google Scholar 

  • Quiring, R., Walldorf, U., Kliter, U., & Gehring, W. J. (1994). Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science, 265(5173), 785–789. doi:10.1126/science.7914031.

    PubMed  CAS  Google Scholar 

  • Reed, R. D., & Nagy, L. M. (2005). Evolutionary redeployment of a biosynthetic module: Expression of eye pigment genes vermilion, cinnabar, and white in butterfly wing development. Evolution & Development, 7(4), 301–311. doi:10.1111/j.1525-142X.2005.05036.x.

    CAS  Google Scholar 

  • Rensch, B. (1959). Evolution above the species level. New York: Columbia University Press.

    Google Scholar 

  • Sakuta, H., Takahashi, H., Shintani, T., Etani, K., Aoshima, A., & Noda, M. (2006). Role of bone morphogenetic protein 2 in retinal patterning and retinotectal projection. The Journal of Neuroscience, 26(42), 10868–10878. doi:10.1523/JNEUROSCI.3027-06.2006.

    PubMed  CAS  Google Scholar 

  • Salvini-Plawen, L. V., & Mayr, E. (1977). On the evolution of photoreceptors and eyes. Evolutionary Biology, 10, 207–263.

    Google Scholar 

  • SAS Institute Inc. (2008). SAS users guide, version 9.2. online documentation. NC: Cary.

    Google Scholar 

  • Schwab, I. R. (2003). Mirrors at the birth of Aphrodite. The British Journal of Ophthalmology, 87(11), 1311. doi:10.1136/bjo.87.11.1311.

    PubMed  CAS  Google Scholar 

  • Sharpe, P. T. (2001). Fish scale development: Hair today, teeth and scales yesterday? Current Biology, 11(18), R751–R752. doi:10.1016/S0960-9822(01)00438-9.

    PubMed  CAS  Google Scholar 

  • Shawkey, M. D., Balenger, S. L., Hill, G. E., Johnson, L. S., Keyser, A. J., & Siefferman, L. (2006). Mechanisms of evolutionary change in structural plumage coloration among bluebirds (Sialia spp). Journal of the Royal Society, Interface, 3(9), 527–532. doi:10.1098/rsif.2006.0111.

    PubMed  Google Scholar 

  • Shawkey, M. D., Estes, A. M., Siefferman, L. M., & Hill, G. E. (2003). Nanostructure predicts intraspecific variation in ultraviolet-blue plumage colour. Proceedings of the Royal Society of London. Series B. Biological Sciences, 270(1523), 1455–1460. doi:10.1098/rspb.2003.2390.

    Google Scholar 

  • Shawkey, M. D., & Hill, G. E. (2006). Significance of the basal eumelanin layer to the production of non-iridescent structural plumage color: evidence form an amelanotic Steller’s Jay (Cyanositta stelleri). The Journal of Experimental Biology, 209(7), 1245–1250. doi:10.1242/jeb.02115.

    PubMed  CAS  Google Scholar 

  • Shubin, N., Tabin, C., & Carroll, S. (1997). Fossils, genes, and the evolution of animal limbs. Nature, 388(6643), 639–648. doi:10.1038/41710.

    PubMed  CAS  Google Scholar 

  • Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457(7891), 818–823. doi:10.1038/nature07891.

    PubMed  CAS  Google Scholar 

  • Siebeck, U. E., Collin, S. P., Ghoddusi, M., & Marshall, N. J. (2003). Occlusable corneas in toadfish: Light transmission, movement and ultrastructure of pigment during light- and dark-adaptation. The Journal of Experimental Biology, 206(13), 2177–2190. doi:10.1242/jeb.00401.

    PubMed  Google Scholar 

  • Siefferman, L. M., & Hill, G. E. (2003). Structural and melanin coloration indicate parental effort and reproductive success in male Eastern Bluebirds. Behavioral Ecology, 14(6), 855–861. doi:10.1093/beheco/arg063.

    Google Scholar 

  • Simpson, G. G. (1961). Principles of animal taxonomy. New York: Columbia University Press.

    Google Scholar 

  • Sobel, M. I. (1995). Light. Chicago and London: University of Chicago Press.

    Google Scholar 

  • Tabin, C. J., Carroll, S. B., & Panganiban, G. (1999). Out on a limb: Parallels in vertebrate and invertebrate limb patterning and the origin of appendages. American Zoologist, 39(3), 650–663.

    CAS  Google Scholar 

  • True, J. R., & Carroll, S. B. (2002). Gene co-option in physiological and morphological evolution. Annual Review of Cell and Developmental Biology, 18, 53–80. doi:10.1146/annurev.cellbio.18.020402.140619.

    PubMed  CAS  Google Scholar 

  • Vaezy, S., & Clark, J. I. (1991). A quantitative analysis of transparency in the human sclera and cornea using Fourier methods. Journal of Microscopy, 163(1), 85–94.

    PubMed  CAS  Google Scholar 

  • Vaezy, S., & Clark, J. I. (1993). Quantitative analysis of the microstructure of the human cornea and sclera using 2-D Fourier methods. Journal of Microscopy, 175(2), 93–99.

    Google Scholar 

  • Wagner, G. P. (1989). The origin of morphological characters and the biological basis of homology. Evolution; International Journal of Organic Evolution, 43(6), 1157–1171. doi:10.2307/2409354.

    Google Scholar 

  • Wake, D. B. (1991). Homoplasy: The result of natural selection or evidence of design limitations? American Naturalist, 138(3), 543–567.

    Google Scholar 

  • Wake, D. B. (1994). Comparative terminology. Science, 265(5169), 268–269.

    PubMed  Google Scholar 

  • West-Eberhardt, M. J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.

    Google Scholar 

  • Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21(10), 1171–1178.

    PubMed  CAS  Google Scholar 

  • Zimmer, C. (2006). A fin is a limb is a wing. National Geographic Magazine, pp. 1–9.

Download references

Acknowledgments

I extend special thanks to Nate Rice (Ornithology Department, Philadelphia Academy of Natural Sciences) and Paula Holahan (University of Wisconsin Zoological Museum) for allowing me to sample feathers from specimens they curate, to Randall Massey (University of Wisconsin-Madison Medical School Electron Microscope Facility) for preparing the TEM samples, and to Ponnampalam Mathiaparanam (Appleton Paper Company) for generously providing optical equipment. William Feeny helped prepare the figures. Two anonymous reviewers offered helpful comments. The National Science Foundation (IOS 0741857) and the College of Letters and Sciences of the University of Wisconsin provided generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bleiweiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleiweiss, R. Feathers with Ocular Architecture: Implications for Functional and Evolutionary Similarities of Visual Signals and Receptors. Evol Biol 36, 171–189 (2009). https://doi.org/10.1007/s11692-009-9059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-009-9059-6

Keywords

Navigation